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The factor model is modified to deal with the problem of factor shifts. This problem arises with

sequential data (e.g. time series, spectra, digitized images) if the profiles of the latent factors shift

position up or down the sequence of measurements: such shifts disturb multilinearity and so

standard factor/component models no longer apply. To deal with this, we modify the model(s) to

include explicit mathematical representation of any factor shifts present in a data set; in this way the

model can both adjust for the shifts and describe/recover their patterns. Shifted factor versions of

both two- and three (or higher)-way factor models are developed. The results of applying them to

synthetic data support the theoretical argument that these models have stronger uniqueness

properties; they can provide unique solutions in both two-way and three-way cases where

equivalent non-shifted versions are under-identified. For uniqueness to hold, however, the factors

must shift independently; two or more factors that show the same pattern of shifts will not be

uniquely resolved if not already uniquely determined. Another important restriction is that the

models, in their current form, do not work well when the shifts are accompanied by substantial

changes in factor profile shape. Three-way factor models such as Parafac, and shifted factor models

such as described here, may be just two of many ways that factor analysis can incorporate additional

information to make the parameters identifiable. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Uniqueness and the ‘rotation’ problem
Factor (or principal component) analysis is sometimes used

to recover the pattern contributed by each individual source

from a mixture of patterns contributed by several sources. In

chemistry, each pattern might be a spectrum of light emis-

sion energies and each source might be a distinct compound;

in psychology, each pattern might be a set of opinions likely

to be held and each source might be a distinct personality

trait, or each pattern might be a set of test problems likely to

be solved and each source might be a specific cognitive

ability. (For a general discussion see e.g. References [1,2].)

However, correct recovery of the source patterns is ham-

pered by the fact that the bilinear model used in factor/

component analysis is ‘under-identified’; it does not provide

a single unique solution but only a family of alternatives

with equally good fit, corresponding to a family of axis

‘rotations’ in the space spanned by the factors.

Considerable effort has gone into the search for methods

to identify the most valid member of the family of possible

solutions. In chemistry, approaches to the problem have

included, for example, evolving factor analysis [3], rank

annihilation factor analysis [4,5], local rank [6] and alternat-

ing regression [7,8]. Often these methods have incorporated

constraints such as non-negativity [9] or ‘selectivity’ [10]. See

Reference [11] (pp. 135–184) for a discussion of these and

other types of constraints that may be used. In psychology,

approaches have included development of criterion rotation

[12] or rotation to theoretical targets (see e.g. Reference [13]

and Reference [14], pp. 353–360). Other rotation methods

optimize some property of the solution, most frequently

some measure of ‘simplicity’ (e.g. Varimax; see Reference

[15], pp. 422–441, and Reference [16]). General principles of

factor rotation are presented in Reference [17] and Reference

[18] (pp. 176–182, 231–238).

A different approach is to modify the factor model itself so

that it incorporates more information and describes more

structure and, as a consequence, is no longer under-identi-

fied. To date, this has primarily been done by generalizing

the bilinear factor model, which fits a single two-way data

matrix, into a three-way model that simultaneously fits

several related data matrices at once [11,19,20]. The simplest

such model is trilinear (or higher-way multilinear) and,
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under conditions that in some situations are relatively nat-

ural, the best fitting factor solution is unique except for trivial

variations that do not affect interpretation (e.g. changing

order of factors) (see e.g. References [21,22]).

In this paper, however, we examine a different way to

modify or strengthen the factor model so that it is no longer

under-identified. Here the added information incorporated

into the model, as well as the added structure described by

the model, concerns the independent ‘shifting of position’ of

factors in a sequential data set. Inability to deal with such

shifts becomes an important limitation of current multi-

linear methods when they are applied to some types of

sequential data.

1.2. Shifted factors in sequential data
For certain kinds of data, the order or relative position of the

measurements carries important meaning. The prime exam-

ples of this are time series data, spectral data and spatial (e.g.

image or map) data. We will refer to such data as sequential*.

If a vector v contains sequential values, then elements with

adjacent subscripts, such as v1, v2 and v3, represent measure-

ments taken at adjacent points along some measurement

continuum. If, for example, the continuum is time, then v2 is

later in time than v1 and earlier in time than v3.

Factor analysis of such data does not, in itself, pose any

problem. The extra meaning implicit in the ordering of the

measurements is preserved or conveyed in the ordering of

the loadings. Observed sequential profiles are modeled as

weighted linear combinations of latent sequential profiles.

New principles are required, however, when the variation

in latent sequential profiles goes beyond simple weighting.

In this paper we consider the case where the overall position

of the profile (i.e. of its particular peaks, valleys, etc.) can shift

up or down on the measurement sequence (see Figure 1). By

‘shift’ we simply mean that the values making up the profile

systematically change subscript location: if ~vv is a shifted

version of v, then ~vvi ¼ viþs, where s represents the amount of

shift. In the shifted factor generalization, observed sequential

profiles are modeled as linear combinations of weighted and

possibly shifted latent sequential profiles.

Such latent shifts can arise in many areas of science.

Shifting of spectral profiles can occur, for example, in astron-

omy when the signal sources are in motion relative to the

observer, as in the well known red shift of light from distant

galaxies, and the complex mixtures of shifted spectra that

arise from the violent activity near some black holes. In

chemistry and physics a wide variety of absorption and

emission spectra are subject to problems of shifting position

(see below). Shifting of time series can occur, for example, in

acoustic or electromagnetic signal processing when mixtures

of similar signals arising from widely separated sources are

recorded using an array of sensors (microphones, antennae,

etc.) located in different places. The differences in relative

distance between each source and each sensor produces a

pattern of shift in the arrival times of the underlying time

series (signal waveforms) from one sensor location to an-

other*. The pattern changes in an orderly way if the sources

and/or sensors change position from one sample of record-

ings to the next, potentially generating three-way or higher-

order multiway data sets. Shifting of spatial patterns can

occur when several images are composites of the same

underlying spatial patterns but these patterns are displaced

in the image plane (or space) by amounts that vary from one

image to the next. This occurs, for example, in functional

brain imaging (fMRI) and in binocular vision.

*For a Parafac analysis of such data without the shifted model
proposed here, see Reference [23].

Figure 1. Twokindsof factorshiftsand theireffects.Fullandbrokenlinesindicate factoranddataprofilesrespectively.

*In the case of images or maps the ‘sequences’ are orderings in two
or more dimensions. Nonetheless, since the added information still
consists of adjacency and distance relations, we also refer to these
data as ‘sequential’.
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1.2.1. Examples from chemometrics and in
neuropsychology

1.2.1.1. Chemometrics. The problem of spectrum po-

sition shifts is widespread in chemometrics and arises in

several different waysy. These include: (a) all hyphenated

methods in which chromatography is hyphenated with

spectroscopy (e.g. LC/UV, LC/NIR, GC/IR, GC/MS); (b)

on-line spectroscopic methods where external variation is

present, such as temperature or viscosity changes (mostly in

NIR, Raman spectra); (c) instrument drift over the long term,

which sometimes causes shifts (mainly IR, NIR, NMR); and

(d) differences between two instruments of the same brand

(e.g. two NIR instruments should give the same spectra for a

compound, and if they do not, shifts may occur).

Not all shifting is equally complicated, however. Tauler

[24] points out the important distinction between the case

where shifts are the same for all factors and the case where

shifts of one factor differ from those of another. Extending

his terminology, we call the first case ‘synchronized’ factor

shifting (a.k.a. measurement level shifting; column b in

Figure 1) and the second ‘independent’ factor shifting

(a.k.a. latent level shifting; column c in Figure 1). Tauler

proposes specific multilinear analysis strategies to deal with

each and points out that trilinear methods are not appro-

priate for the shifted cases, particularly when shifts are not

synchronized.

Bro et al. [25] considered the problem of shifts in the

context of analyzing three (and four)-way data from chro-

matography. They showed how shifts and other changes in

the elution profiles degraded the results returned by a

straightforward Parafac analysis. To solve the shift problem,

they directly fit Parafac2 to these data, which gave better

results. In Part III [26] we reanalyze their data and compare

the advantages and limitations of their approach with those

of shifted factor analysis (SFA).

1.2.1.2 Neuropsychology. Field and Graupe [27] en-

countered the problem of factor shifts in an analysis of brain

electrical potentials elicited by light flashes. They did a

Parafac analysis of a time (after stimulus) by subject by

electrode location data array and convincingly demonstrated

that factor shifts (i.e. variation in arrival time of the signals

generated by underlying brain events, due to changes in

subject excitability or other influences) resulted in the crea-

tion of an artificial additional factor. The factor was shaped

like the first derivative (in time) of the ‘jittering’ component of

the electrical evoked response, and it had subject weights that

correlated 0.77 with subject latency variations in the data.

1.2.2. Added complications due to shape changes
Often it is not only a shift of peak position that occurs but

also a change in peak shape. For example, see Reference [28]

and references cited therein. Wulfert et al. [28] studied

the effects of shifts and shape changes on the fit and predi-

ctive ability of multivariate models, taking as their example

short-wave NIR spectra of ethanol/water/isopropanol mix-

tures at different temperatures. They showed that ‘Spectra

that exhibit shifts or other changes in their shape do not

conform to the linearity demand and consequently a multi-

variate model will have to use more regression factors than is

to be expected by the chemical rank (number of components

in the mixture)’ (p. 1762).

Provision for peak shape change is not incorporated into

the models to be described in this paper. However, many of

our results (including uniqueness results) seem to be ex-

tendible to shape change situations, as will be explained in

Section 6.

1.3. Previous work on the shift problem
To deal with the problem of alignment of time series, Cattell

[29] proposed his ‘time-corrected P-technique’. This method

attempts to correct a mismatch of position before the analysis

begins, allowing one to subsequently factor the variables in

the standard way. To accomplish this, the variables were

shifted relative to one another by amounts that maximized

cross-variable correlations (considered pairwise), shifting to

maximize the correlation for each pair, repeating for all

possible pairs and then iterating the whole process until a

globally maximum sum (neglecting sign) of all pairwise

correlations was obtained. Although this method permitted

one variable to be lagged relative to another, it did not

consider the possibility of individual factors within the

same variable having different lags.

Molenaar [30] overcame this limitation and generalized

Cattell’s technique by allowing differing lags of individual

factors. The method was called dynamic factor analysis

(DFA). It was constructed to analyze time series data, but

the parameters were estimated by fitting the covariance

matrix that such time series would produce. Because of its

greater flexibility and additional parameters, the model was

considerably more complicated than Cattell’s approach and,

in fact, more complex than the SFA models to be considered

here. We refer the reader to Reference [30] for further details.

Both SFA and DFA incorporate shift (or time lag) variation

as a part of the model’s latent variable parameters. In

contrast, there have recently been some new data-preproces-

sing techniques proposed for peak realignment that are (like

Cattell’s method) applied directly to the ‘surface’ data. These

are, for example, proposed for chemometric applications

such as analysis of retention time-shifted chromatographic

spectra or frequency-shifted spectroscopic profiles. Some of

these techniques are described in the following paragraphs.

Prazen et al. [31] considered the retention time shift

problem in second-order chromatographic/spectroscopic

data. They took advantage of the fact that position shifts

increase the complexity of the data structure. They first

adjoined a two-way standard LC/UV data matrix (where

underlying spectra were lined up) with a sample LC/UV

data matrix (where underlying spectra were subject to un-

known shifts) so that the two matrices shared the same time

axis. Were it not for the position shifts in the sample data, the

augmented data would have had the same ‘essential’ data

rank (i.e. ignoring noise) as the standard data. This should

also match the number of chemical components. Based on

this, the method considers the variance contributed by the

first R eigenvalues, where R is the ‘essential’ rank of the

standard (or the number of analytes—known a priori). It then

makes position shifts of the profiles in the sample data soyOur thanks to Dr A. Smilde for his help with this subsection.

Shifted factor analysis—Part I 365

Copyright # 2003 John Wiley & Sons, Ltd. J. Chemometrics 2003; 17: 363–378



that the variance due to the Rþ1 and later eigenvalues is

minimized. The type of shift is the same as in Cattell’s

method, a shift of the full profile for each sample, but the

definition of optimum shift uses an external standard rather

than internal correlations. Fraga et al. [32] used the same

method to adjust for retention time shifts in two-dimensional

gas chromatography (GC/GC).

Vogels et al. [33] developed a method that was more

flexible. Their approach compares portions of each individual

spectrum with the mean spectrum and then shifts each

portion left or right until the sum of squared differences

between a particular region in a sample spectrum and the

corresponding region in the mean spectrum is minimized.

They called it the partial linear fit (PLF) algorithm and applied

it to position shifts of peaks in NMR spectroscopic data.

Other methods go beyond simple shifting. Nielsen et al.

[34] used time warping instead of simple shifting as a data-

preprocessing tool, applying it to retention time shifts in

chromatographic profiles. Time warping adjusts for shape

changes such as broadening or narrowing of peaks and, to

some extent, for position shifts as well. Bylund et al. [35]

applied the same approach to the retention time shift pro-

blem in LC/MS data profiles in the Parafac-modeling con-

text and appear to have made an additional refinement: an

adjustment for overall shifts.

Another position and shape adjustment technique, used

by Westad and Martens [36], is gradient-based motion

estimation. In this method, speeds of ‘flow’ of spectral shape,

represented by shift vectors, are determined using difference

profiles between sample spectra and a reference spectrum.

Then the estimated shift vectors are used for alignment of

sample spectra. Like the time-warping method, this ap-

proach flexibly adjusts for complex shape changes as well

as position shifts. (See Reference [37] for a more detailed

description of the algorithm.)

2. REPRESENTING SHIFTS: THE SHIFT
OPERATOR AND ARRAY NOTATION

We will be discussing models that represent factor shifts by

means of systematic changes in the subscript values of array

elements. Consequently, we will need an efficient way to

describe such changes. The only way to do this with current

notation (as far as we know) is to write a scalar expression

and replace the usual i and j subscripts with more complex

expressions that show how subscript values are to be com-

puted, such as xiþs. This is not suitable when we need an

expression for a full matrix or array incorporating shifted

elements (e.g. in order to use it in a matrix product or some

other matrix expression) or when we want to take an

equation involving shifted vectors or matrices and manip-

ulate it to get a new equation involving the same objects with

different amounts of shift.

There are (at least) two ways to deal with this problem: one

is to define a new addition to matrix notation—a mathema-

tical operator that performs matrix index shifts; the other is

to change one’s basic array notation from standard matrix–

vector conventions to one in which array index shifts can be

represented naturally, without the need for special opera-

tors. Both approaches have advantages. On the one hand,

use of the matrix operator allows the shifted factor models to

be represented in papers and contexts that use conventional

matrix notation throughout. On the other hand, the array

notation to be used here can represent shifted arrays of all

kinds without requiring a new special operator. In some

sense, it provides the only complete solution, since it can

express shifted factor models that have no straightforward

representation in terms of the shift operator (e.g., see section

5, below). However, to facilitate the introduction of these

shifted models, and to aid future workers who may want to

adopt either approach, we shall lay out our definitions in both

ways. In Parts II and III, we will primarily use the shift

operator, since it is compatible with the models discussed

there and allows us to use matrix notation throughout, thus

reducing the learning effort required of the reader.

2.1. The shift operator
To facilitate the expression of multilinear models* with

shifted components, we define a shift operator (or function)

sj
ð�Þ which takes some (or all) values in an array and

assigns them new subscript numbers, thus ‘shifting’ them

to new locations in the array. Each subscript in a set of

shifted elements is incremented in size by the same fixed

amount, which is determined by an argument given to the

operator. When applied to a vector of sequential data, this

causes the profile of peaks and valleys to shift position by

that amount along the sequence.

The two most common (and simplest) applications of the

operator will be to shift a vector and to shift the columns of a

matrix. This generalizes in a natural manner to three- and

n-way arrays and to expressions for subarrays. For an

explanation of these generalizations and a more complete

general discussion of the mathematical properties of the shift

operator, see the Appendix. The employment of the operator

in subsequent sections of this paper will provide additional

examples that demonstrate its use.

2.2. Array index notation
An alternative to the shift operator is the use of Array Index

Notation (AIN) [38]. Here subscripts occur explicitly not

only in the names of array elements but also in the names

of the arrays themselves. Individual letters that indicate sets

of subscript values can be replaced by expressions that

represent a systematically modified set of these subscript

values, and hence an array name can directly express a

particular shift of its elements.

2.2.1. Two basic rules
AIN notation is described fully in Reference [38]. For our

current purposes we summarize two basic rules governing

*And models which we would call either quasi- or semi-multilinear.
Sometimes, when being precise, we follow a convention that uses
distinct and specific names for two classes of models with mostly
multilinear structure but with certain violations of multilinearity.
Models that are multilinear except that some sets of parameters enter
more than once (e.g. Parafac2) are referred to as ‘quasi-multilinear’,
because they are quadratic or cubic, etc. in these parameters. Models
in which parameter sets for some modes combine in a simple
multiplicative or multilinear fashion, but those for others enter or
combine in a different way, are referred to as partly multilinear or
semi-multilinear. For convenience, these distinctions are often ig-
nored and the term ‘multilinear’ is used loosely to refer to all these
models.

366 R. A. Harshman, S. Hong and M. E. Lundy

Copyright # 2003 John Wiley & Sons, Ltd. J. Chemometrics 2003; 17: 363–378



AIN that are important for this paper, and point out some of

their implications.

2.2.1.1. Uppercase subscripts. When a name refers

to an element in an array, the subscripts in the name are

written in lowercase, as in xij. When the name refers to the

entire array, the subscripts are written in uppercase, as in xIJ;

when it refers to a subarray or a part of an array, only

subscripts that take on multiple values in the part referred to

are written in uppercase, as in xIj, which is the name of a

(generic) column of xIJ. Uppercase subscript letters denote

the set* of index values for that subscript position, rather

than just a single value, and so any name containing that

uppercase subscript represents a set of elements, in other

words, an array or subarray. Some further examples: the

vector conventionally written in matrix notation as v with

elements vi is written in AIN as vI with elements vi; likewise,

the matrix Y with rows yr and columns ys and elements yrs is

represented in AIN as yRS with rows yrS, columns yRs and

elements yrs.

2.2.1.2. Summation convention. The AIN system of

notation follows a convention (often called the ‘Einstein

summation convention’) which specifies that whenever

identical subscript set names occur on two arrays being

multiplied together, such as the R in aIRbJR, corresponding

elements from the two arrays (elements that have matching

values for the subscripts with matching names, e.g. ai3 and

bj3) should be pairwise multiplied together and the products

summed; in this example the sums have the form

ai1bj1 þ ai2bj2 þ � � �. The sum is placed into the product

array at the location determined by the non-matching sub-

scripts. For example, if cIJ ¼ aIRbJR, elements in the pro-

duct are computed as cij ¼
P

r airbjr. Hence in this

example the expression aIRbJR specifies the standard matrix

product AB0. In AIN the same principle is also extended

to more than two coefficients with matching subscripts, so

that pIJK ¼ aIRbJRcKR means pijk ¼
P

r airbjrckr, thus

providing another way of writing the Parafac/Candecomp

model.

2.2.2. Representation of shifted arrays
With this notation it becomes a relatively simple matter to

represent arrays in which subscripts are shifted in value. For

example, the vector ~vv was defined previously as being the

same as vector v except that all the subscript positions have

been increased by an amount s. The equation relating the two

vectors would be written in matrix notation using the shift

operator as ~vv ¼ sðvÞ, but it can be written in AIN without

any special operator as simply ~vvI ¼ v½Iþs�. An array that is

shifted across levels of a particular mode (e.g. A) by a

particular amount (e.g. s) can be written as y½Iþs� JK; in this

case, only column vectors are shifted.

If the shift value added to the sum varies across the levels

of some mode, then the shift value appearing in the com-

puted subscript is itself subscripted. For example, in the

array yI ½Jþsk�K, the values of the subscript j are shifted by

(potentially) different amounts at each different level k of the

third mode. It is also common that a shift value depends on

the levels of two other modes, as in yI ½Jþsik�K. These

expressions can be written more formally in AIN by using

the rules for computed elements. For our current example

the expression could be written as ðyi½jþsik�kÞIJK. Note that

by using a name containing subscripts (in this case sik) to

refer to the shift value, such expressions imply the existence

of a separate matrix, in this case sIJ (or in matrix notation, S)

containing the shift values.

The use of AIN eliminates the need for a special shift

operator, but some of the shift-related issues still remain. In

particular, the principles adopted for dealing with ends of

shifted vectors must be established and agreed on, just as

they must with use of the shift operator (see the Appendix).

2.2.3. Further generality possible
In addition to its flexibility in dealing with one-dimensional

sequences, AIN allows the straightforward statement of

more general models, such as those involving shifts in the

plane (e.g. of an image) or in three-space (e.g. of a brain

scan). For example, in the array y½Iþt�½ Jþu�K, entire slices are

shifted: each mode C slice (i.e. each frontal plane of the array)

is shifted by t units in row position and by u units in column

position.

In certain cases it is natural to have some of the constituent

sets of model parameters organized into three-way or higher-

way arrays. One example, involving three-way factor loading

arrays, will be presented later in this paper. It demonstrates

how an interesting and potentially useful shifted factor model

can be simple to state in array notation but be difficult or

impossible to state in conventional matrix notation.

3. THE TWO-WAY SHIFTED FACTOR
MODEL

Consider a matrix X containing sequentially organized data

(e.g. a set of time series, spectral or spatial measurements,

etc.). Using standard multiway terminology, we say that the

two-way array X has two ‘modes’ (short for ‘modes of

classification’ [39]). By convention, the row positions are

called levels of mode A and are indexed by i, while the

column positions are called levels of mode B and are indexed

by j. Two additional conventions are adopted for shifted

factor models: (a) We will always arrange the data so that

mode A (rows) has the sequentially ordered levels. Thus row

positions correspond to positions along the sequence (e.g.

successive time points, frequencies, etc.), and each column

contains one sequential profile. Different columns usually

correspond to different sources or conditions of measure-

ment (e.g. different variables, objects, etc.). (b) By conven-

tion, mode B is the one that controls the amount of shifting

(i.e. it is the mode in which the amounts of factor shift change

from one level to the next). This is summarized by saying

that mode A is the ‘shifted’ mode and mode B is the ‘shifting’

(or ‘shift-controlling’) mode.

Of course, so long as there are no factor shifts, we can

represent sequential data in standard matrix notation

using the standard factor/component model. We write it
*In all the cases considered here, these sets are not just collections of
elements, but ordered collections.
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here as

X ¼ AB0 ð1Þ

where A is an I�R matrix in which air gives the relative

contribution of factor r at sequence location i, and hence the

columns of A describe the latent sequential vectors. Likewise,

B is a J�R matrix in which bjr gives the relative contribution

of factor r (i.e. of latent sequential vector r) for the jth column

of X. (Note that here and below we omit the error or residual

term of these models and focus on the structural part. The

error terms are sometimes included in Part II [40] where

fitting of fallible data is discussed.)

3.1. Generalization stated in array notation
In AIN the standard unshifted bilinear model is written as

x
IJ
¼ a

IR
b

JR (2)

where xIJ ¼ X, aIR ¼ A and bJR ¼ B.

In this notation a limited generalization of (2) that allows

for synchronized factor shifts can be written as

x
IJ
¼ a½Iþsj �R

b
JR (3)

where the parameter sj gives the amount of shift that all

factors show at level j of the data. This is the ‘time-corrected

P-technique’ model considered by Cattell [29]. As noted

earlier, it is equivalent to a model written in terms of shifts

of the jth data vector, and so could be rewritten as

xIJ ¼ ~xx½Iþsj� J.
In this paper we focus our interest on a more general

model, one that allows for independent shifts of each factor

at each level j of the data. It is written in AIN as

x
IJ
¼ a½Iþsjr �R

b
JR (4)

Here the shift parameter sjr gives the shift at column j that is

exhibited by factor or component r. (In other words, as the

subscript set J goes through its range of values, the j on sjr

goes through the same range, and likewise for R and r*.)

Equation (4) is the basic two-way version of shifted factor

analysis (SFA).

3.2. Generalization stated using the shift
operator
Unfortunately, the familiar matrix formulation of the un-

shifted model given in (1) cannot be economically converted

to a shifted factor form (as will become clear below). To

facilitate generalization of a matrix formulation, we restate

the model using standard notation but in a ‘representative

vector’ form (see Reference [41] on slice-based and vector-

based notation).

The equivalent of (1) in a ‘representative vector’ formula-

tion is

xj ¼ Abj ð5Þ

Here xj is column j of X, A is as before and bj is an R� 1

column (i.e. row j of B) that gives the relative weights or

contributions of the R factors on occasion j. Then, by using

the shift operator described above (and in the Appendix), we

can write a shifted factor equivalent of (5) as

xj ¼
XR
r¼1 sjr

ðarÞbjr

or, more compactly,

xj ¼
sj

ðAÞbj ð6Þ

where, as before, sj comes from S, a J�R matrix giving the

shift sizes for columns 1 to J for each of the factors 1 to R.

Replacing the scalar sjr by the vector sj allows us to use the

shift operator on A instead of ar, which yields a more

compact expression, where sj is a vector of R shift values

taken from row j of the (implied) shift matrix S.

Finally, by repeated use of (6) we can construct a shifted

factor equivalent to (1) which does describe the shifted factor

structure of the full matrix X, but it has the somewhat

awkward form

X ¼
s1

ðAÞb1j
s2

ðAÞb2j � � � j
sJ

ðAÞbJ

" #
ð7Þ

4. UNIQUENESS PROPERTIES OF
THE TWO-WAY MODEL

Of key interest here is the uniqueness of the solution (i.e.

identifiability of the model parameters given a set of data) for

the model given by (4) and (6) or (7). We have investigated

this both mathematically and empirically. Both lines of

investigation provide strong support for the conjecture

that incorporation of information on shifts can strengthen

the model enough to make the parameters identifiable up

to scaling and column order, and hence make them, in

Kruskal’s terminology, ‘essentially unique’. (In this paper

we will follow the common practice of dropping the quali-

fier ‘essential’.) This identifiability appears to hold under

relatively mild conditions, which would frequently, though

not always, obtain with certain kinds of sequential data.

4.1. Mathematical results
We are constructing what we hope to be a proof of unique-

ness (R. A. Harshman and M. E. Lundy, unpublished manu-

script) for solutions to the shifted factor model given in (4) or

(7). The theorem can be summarized as follows. Consider

any two alternative shifted factor representations of X (i.e.

alternative factor profiles A vs A
�

, column weights bj vs bj

�

and factor shift vectors sj vs s
�
j) that both produce the same

array, so that

xj ¼
sj

ðAÞbj ¼
s�
j

ðA
�
Þb
�
j ð8Þ

In AIN this would be written as xIJ ¼ a½Iþsjr�RbJR ¼
a�½Iþs� jr�Rb

�
JR.

If the structure of X fulfills certain conditions, the two

representations can only differ in trivial ways. Specifically,

they must be related as follows:

B
�
¼ BPD�1 ð9Þ

A
�
¼ APD ð10Þ

where P is a permutation matrix and D is diagonal (this

assumes there is a convention setting the zero-shift locations).*In other words, xIJ ¼ ðða½iþsjr�rÞIRbjRÞJ.
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4.1.1. Requirements
The theorem’s assumptions (i.e. some conditions sufficient to

ensure this uniqueness) can be briefly summarized as fol-

lows: (i) A has full column rank; (ii) column shifting does not

change the rank of A; (iii) the columns of A are not ‘cyclic’

(self-proportional when shifted); (iv) X includes a set of at

least Rþ1 columns which has k-rank of R and in which any

two factors show independent shifts at least once.

The first three assumptions (maintenance of linear inde-

pendence from the same and other factors after shifts, and

non-cycling profiles) seem likely to be fulfilled in most real

data situations. The maintenance of linear independence

after shifting would usually be a natural consequence of

the non-linearity of the transformations imposed by shifting.

Non-linear factor transformations other than shifts (e.g.

shape changes) might also fulfil these requirements, which

raises potentially broad possibilities (see Section 6).

4.1.2. Implications
If proven true, the theorem would support the idea that

latent factor shifts can provide an added source of informa-

tion that can be used to distinguish the factors. This would be

analogous to the added information provided by the changes

in factor weights across the third mode in multilinear models

such as Parafac and Parafac2. Alternative ‘rotation’ and/or

shifting of the factors (or combinations of shifting and

rotation) could not reproduce the observed data.

4.1.3. Necessary or sufficient conditions
The proof requires at least Rþ1 columns in X to obtain

uniqueness of R factors. We do not know whether this is

necessary or whether fewer will do. (Recall, for example, that

the first uniqueness proof for Parafac [42] needed to assume

R levels of every mode in order to prove uniqueness of R

factors, but the second proof [43] required only two levels of

mode C for any number of factors*.) Independence of each

factor’s variation of shifts is also critical for uniqueness of the

unconstrained version of the model. (Finally, it should be

obvious that if any column of sequential factor loadings is

‘cyclic’ (i.e. proportional to a shifted version of itself), then

the solution obtained for that factor is at most unique only up

to the length of one such cycle. However, that may be all that

is needed or meaningful in such conditions.)

4.2. Empirical results
We have performed some empirical tests of the uniqueness

properties of the shifted factor model. Of course, computer

experiments cannot prove uniqueness conclusively, but they

can provide evidence in support of a conjecture (and of a

proposed theorem). So far, our experimental question has

been quite modest: does the two-way shifted factor model

ever provide unique solutions?** Based on our empirical

results, the answer seems quite likely to be ‘yes’. Certainly,

the particular cases that we have tested seem to be unique in

the practical sense that no competing or alternative perfect-

fitting solutions are observed under simulated data analytic

conditions.

4.2.1. Weighted factor case
Initial computational tests of uniqueness were carried out by

Hong [44]. His methods and results have not been published

elsewhere, but they contribute significantly to the evidence

for uniqueness, so they are briefly summarized in Part II [40].

Additional experimental applications of the SFA model

were carried out as part of our current study. The details are

reported in Part II [40]. The new results further support the

conjecture of identifiability of the SFA model. In addition,

they show apparent uniqueness of the solution in conditions

not covered by the mathematical analysis, in particular the

‘pure shift’ case.

4.2.2 ‘Pure shift’ two-way case
Having supported the hypothesis that incorporation of shift

information into the factor model allows a unique two-way

solution to be obtained, the question now becomes: what is

the strength of the information provided by that portion of

the data variance due to the factor shifts—to what degree

might it determine the factors recovered by the two-way SF

model, independently of information provided by variance

resulting from factor size changes across levels of mode B?

To explore this, we created a synthetic shifted factor data set

using the same true values for the A and S parameters as in

the 60� 75 data for the weighted factor case (see Part II [40]

for details), but using B weights that were all unity. Thus the

variation across columns in the data is purely due to the

independent shifting. Put another way, these data would

have rank one without the shifts but have rank J with the

shifts. The latent SFA dimensionality was three.

Two versions of the shifted factor model were fit to these

data, a restricted one and the more unconstrained one used

above for the standard synthetic data. The restricted one was

a ‘pure shift’ model. To fit it, mode B weights were held fixed

at one, and A and S were fit as before. The result was that A

and S were perfectly recovered. In the other test, where the

fitting algorithm allowed the mode B weights to vary, we

again observed perfect recovery of the factor loadings in A, B

and S (after appropriate column scaling in B to set the

weights to unity).

These results empirically demonstrate that the informa-

tion in the data provided by independent shifting can be

quite strong. Sometimes, shifting alone is sufficient to resolve

the SFA factors and allow the model parameters to be

uniquely determined. We currently have no mathematical

analysis of the properties of SFA for ‘pure shift’ data.

5. THREE-WAY SHIFTED FACTOR
MODELS

So far, the shifted factor principle has been discussed in

terms of the shifted bilinear model (S-PCA/SFA). We now

consider two basic multilinear (and quasi-multilinear) gen-

eralizations of this model to three-way data and higher-way

data.

**Of course, the one-factor case is special. Data generated by only
one factor have an essentially unique decomposition for all multi-
linear models of which we are aware, including the standard bilinear
factor/component model. Nonetheless, although likely, it is not
completely certain that SFA will be unique for one factor, since (a)
it is only partly multilinear and (b) it has additional parameters and
degrees of freedom compared with the bilinear model.

*A consideration of the capabilities of binocular vision suggests that
fewer than Rþ 1 levels might sometimes be enough to uniquely
determine an SFA solution.
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5.1. S-Parafac/S-Candecomp
Parafac/Candecomp is probably the simplest of the

three-way (and multiway) models; this makes it useful to

demonstrate the incorporation of shift capability into the

higher-way domain. The acronyms stand for parallel factor

analysis [21,42,45] and canonical decomposition [46] respec-

tively. It is easy to specify the shifted factor generalization of

the model using array notation, so we will do that first.

5.1.1. Using array notation
In array notation (AIN [38]) the Parafac/Candecomp model

is written as

xIJK ¼ a
IR
b

JR
c

KR (11)

To generalize (11) to incorporate shifting (at this point, of

only one mode), we can either start with (4) and add factor

loading parameters for the third mode, or start with (11) and

add a shift parameter to the index I. One obtains

x
IJK
¼ a½Iþsjr�R b

JR
c

KR (12)

5.1.2. Using matrix notation
There is no equally simple way to state, and then generalize,

the Parafac model using matrix notation. This is under-

standable, since Parafac is three-way and matrix notation is

inherently two-way. The problem is similar to that of repre-

senting the earth’s surface on a flat sheet of paper. There

have been two main methods that have been used to cope

with this: (a) representing only a local region or (b) unfolding

and flattening the curved surface. For a three-way array the

analog of the first method is to work with a ‘representative

slice’ [11,41]; the analog of the second is to use matrix

‘unfolding’ or matricization [41,47]. Generalization of the

first method to shifted factor arrays is relatively straightfor-

ward; generalizing the second method is more difficult.

In the ‘representative slice’ formulation, one gives the

latent structure of one slice, with a subscript appended to

indicate repetition of similar slices across the third mode.

Typically, the slice used is Xk, a ‘frontal slab’ (see Reference

[48], p. 7, and Reference [49], p. 231), and the model is written

as

Xk ¼ ADkB
0 ð13Þ

where Dk is a diagonal matrix containing the kth row of C.

In our shifted factor generalization the diagonal weights

will be selected from a different matrix, and so the greater

transparency of angle bracket notation [41] will be helpful.

(This notation simply consists of replacing the diagonaliza-

tion operation usually represented as ‘diag (�)’ with ‘h�i’, i.e.

an expression is enclosed in angle brackets to represent its

diagonalization.) When (13) is rewritten in this way, it

becomes

Xk ¼ AhckiB0 ð14Þ

With shifted factor analysis the representative slice cannot

be a frontal slice because of the convention that A is the

sequential ‘shifted’ mode and B is the ‘shifting’ mode; thus

shifts in A change from one column of B to the next. This

makes it impossible to use a fixed A for all columns of B

simultaneously, as was done in (13) and (14).

If, however, we consider the subset of all xijk values that do

share a given shifted version of A, we obtain the I�K matrix

at level j of mode B. This is a ‘lateral slab’ or lateral slice of X

(see Reference [48], p. 7, and Reference [49], p. 231). As a

basis for shift generalization we rewrite the standard un-

shifted Parafac model as

Xj ¼ AhbjiC0 ð15Þ

where A and C are factor loading matrices for modes A and

C respectively and hbji is a diagonal matrix containing the jth

row of B.

Now we can write a matrix version of the generalization to

shifted Parafac1. It is

Xj ¼ sj
ðAÞhbjiC0 ð16Þ

(In the following discussion we will sometimes refer to the

model given in (16) or (12) as S-Parafac or, more precisely, S-

Parafac1 and compare it with e.g. S-T3, S-Paratuck2, S-

DEDICOM, etc.)

It is more difficult to generalize the three-way factor model

to shifted form when it is written using the unfolding/

matricizing approach. In the unshifted version the data array

is converted into a matrix by adjoining successive slices to

produce one long two-way data set (see e.g. Reference [47]).

Then the Parafac model can be expressed in matrix terms

either by means of the Khatri–Rao* columnwise Kronecker

product ‘�’ [11] or by means of the standard Kronecker

product ‘�’ combined with an enhanced notation** (see

Reference [47], p. 109). The first method gives

XðI�JKÞ ¼ AðC� BÞ0 ð17Þ

and the second

Xa ¼ AIaðC0 � B0Þ ð18Þ

It would be tempting to jump to the conclusion that the

corresponding shifted factor generalizations are simply

XðI�JKÞ ¼ sj
ðAÞðC� BÞ0 and Xa ¼ sj

ðAÞIaðC0 � B0Þ, but

there are two difficulties. First, there is no longer a single j

for each shifted version of A. This is relatively easy to

overcome, by simply defining a new column subscript that

combines both j and k and then establishing appropriate

values in the associated row vectors of an extended S. The

second problem is more difficult. After unfolding the array,

we have a two-mode model that has the same structure as

(1), and so we encounter the same difficulty that arose when

we tried to generalize (1): there is no fixed single A in the

shifted version. By defining new matrix operations, it may be

possible to deal with this, but this would take us beyond the

scope of this paper.

5.2. Tucker models
The other fundamental three-way model family in current

research is Tucker’s three-mode factor analysis family,

which includes T3, T2 and related models [48] (including,

more recently, constrained Tucker; see e.g. Reference [50]).

Many of the issues raised above for Parafac apply here as

well and so need not be repeated.

*Khatri-Rao-Bro
**The subscript ‘a’ identifies the unmodified mode.
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5.2.1. S-T3 and S-T2
By arranging one’s data so that mode A is the sequential

mode and mode B is the ‘shift controlling’ mode, it is

straightforward to obtain a simple version of the shifted

Tucker T3 (S-T3) model. In array notation the model might

be written as

x
IJK
¼ a½Iþsjp �P

b
JQ
c

KR
g

PQR (19)

When written in representative slice form, using ‘encapsula-

ted summation’ [41], and switching B and C as in (16), this is

Xj ¼ sj
Að Þ

X
q

b
jq
Gq

 !
C0 ð20Þ

Similarly, S-T2 becomes

x
IJK
¼ a ½Iþsjp � P

c
KR
g

PJR (21)

in AIN and

Xj ¼ sj
ðAÞGjC

0 ð22Þ

in representative slice form. The above representations have

only one shifted mode, but there are, no doubt, other inter-

esting possibilities that we have not explored.

5.2.2. Uniqueness
It is interesting to note that while the unshifted versions of

these Tucker models are under-identified (unless special

restrictions are imposed as in Reference [50]), it seems quite

likely that their shifted versions will have identifiable para-

meters. This is because these models can be written such that

each slice is a shifted two-way model, and we have strong

evidence (reviewed above) that such two-way models have a

unique solution. If so, S-T3 and S-T2 would combine the

Tucker models’ greater structural generality (relative to

Parafac/Candecomp) with the desirable property of identifi-

able parameters, which previously was possessed by only

the more restricted models.

5.3. Other possibilities for future exploration
Table I shows standard and generalized forms of the direct

fit models discussed so far. Of course, this table does not

exhaust the possibilities; from these examples, however, one

can easily see how other multilinear and quasi- or semi-

multilinear models could be generalized to allow shifting of

latent variables. Now we will briefly venture beyond the

more familiar models discussed in the table and mention

some other possible shifted factor models that have not yet

been explored.

5.3.1. Models for cross-product or covariance data
The models proposed so far have all been what Kruskal [51]

calls ‘direct fit’ models; that is, they are applied directly to

the data array. In contrast to these are the ‘indirect fit’

models—models for the structure underlying sets of quan-

tities derived from the data, such as covariances or other

cross-product arrays. Included in these are standard factor

analysis of correlation or covariance matrices, both inner-

product and outer-product versions, and three-way models

such as Parafac2 and Tucker’s three-mode multidimensional

scaling (TMMDS). Some preliminary exploration indicates

that there are a number of interesting things that result from

applying the shifted factor principle to these cross-product-

type matrices, but it is too large a subject to take up here.

Two less obvious directions of possible further develop-

ment that we would like to mention here are (a) models with

two sequential modes and in which one wants to make

allowance for shifts in both these modes, and (b) models

involving shifts in a plane or space rather than along a line.

Currently, neither of these directions has been explored

beyond the formulation of the basic idea.

5.3.2. Doubly shifted factor structures
Some types of data involve more than one sequential mode.

Consider, for example, a sound spectrogram. It gives energy

values at each of many successive frequencies for each of

many successive times. Now, if, in addition, an investigator

simultaneously records data from these sound sources using

microphones placed at several different locations, we obtain

a three-mode data set that could be organized as frequen-

cy� time� location.

Suppose these data have structure that can be described in

terms of latent variables. For example, suppose there are

several sound sources (e.g. several airplanes) and that we

want to separate out and measure their individual charac-

teristics based only on the mixtures of sound arriving at the

different microphones. We can consider these sound sources

to be latent causal factors producing the spectral mixtures

observed at each microphone. Each source/factor would

have one sequential loading profile in the frequency mode

and one in the time mode. Either or both of these profiles

could be shifted when the latent structure at one recording

location is compared with that at another, and the pattern of

variations (across recording locations) in one factor’s shift

sizes could be independent of the patterns for other factors.

Across the frequency mode the spectral profile correspond-

ing to a given airplane would shift position as a function of

the velocity of the source in the direction of the receiver

(Doppler shift). Across the time mode the observed temporal

position of changes in the intensity of a given factor could be

shifted from one recording location to the next as a function

of the distance between the source and the receiver’s location

(owing to signal propagation lag).

We can imagine what some models for situations such as

this might look like. For example, if the sources are distant

Table I. Direct fitmodels: unshiftedandshiftedrepresentations

Model Matrix notation Array index notation

PCA X¼AB0 x
IJ
¼ aIRbJR

X ¼
sj
ðAÞB0 x

IJ
¼ a½Iþsjr�RbJR

Parafac1/ Xj ¼ AhbjiC0 x
IJK
¼ aIRbJRcKR

Candecomp Xj ¼ sj
ðAÞhbjiC0 x

IJK
¼ a½Iþsjr�RbJRcKR

T3 Xj ¼ A
P

q bjqGq

� �
C0 x

IJK
¼ aIPbJQcKRgPQR

Xj ¼ sj
ðAÞ

P
q bjqGq

� �
C0 xIJK ¼ a½Iþsjp �PbJQcKRgPQR

T2 Xj ¼ AGjC
0 x

IJK
¼ aIPcKRgPJR

Xj ¼ sj
ðAÞGjC

0 x
IJK
¼ a½Iþsjp �PcKRgPJR
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enough from the microphones*, one might consider a shifted

Parafac model such as

xIJK ¼ a½Iþsjr �R
b

JR
c
½Kþ jr �R (23)

where mode A is frequency, mode B is location, mode C is

time and the shift values sjr and s
_

jr are taken from two

matrices of shift values, S for mode A and S
_

for mode C.

This model can be written using the shift operator by

considering a representative lateral slice:

Xj ¼ sj
ðAÞhbjið ŝsj

ðCÞÞ0 ð24Þ

In similar fashion a doubly shifted version of the S-T3 model

might be written in AIN as

x
IJK
¼ a½Iþsjp �P

b
JQ
c
½Kþ s

_
jr �R
g

PQR (25)

We find this model difficult to write using standard matrix

notation plus the shift operator.

For those less familiar with array notation, we can write an

expression for a ‘typical element’ in the doubly shifted S-T3

as

xijk ¼
X
p

X
q

X
r

aðiþsjpÞp bjq cðkþ s
_

jrÞr
gpqr ð26Þ

As usual, array and scalar notation have a very similar

structure, but the array version represents the entire array,

and can be manipulated as such [38].

These double-shift models seem interesting from a formal

point of view, and potentially useful, but this is another

direction that we have not actually explored.

5.3.3. Spatial shifts
Time series and spectra are one-dimensional sequences.

Other types of data are sequential in a higher-dimensional

continuum, such as in a plane (e.g. image) or three-space

(e.g. brain or body ‘scan’, seismic array data, atmospheric

pollution patterns). An analysis of images into latent image

components might want to allow for modest spatial shifting

of the latent images along any direction in the image

plane. More generally, it might be useful to have models

that could easily deal with factors that shift within a multi-

dimensional space. One possible approach is to change a

loading matrix such as aIR into a loading array aIKR. In the

case of two-dimensional sequences, each mode A loading for

a given factor would be identified by its joint position on

two co-ordinates. It seems quite difficult to state such a

model in matrix terms, but in array notation it would have

the form

xIJK ¼ a½Iþs1jr �½Kþs2jr �R
b

JR (27)

Here the size and direction of factor shifts on the plane

would be given by the vector ½s1jr s2jr�. The shifts for each

mode A factor would be represented by two columns.

For models such as this, there would be a range of valid

alternative linear combinations within each factor’s co-ordi-

nate pair, corresponding to ‘rotations’ of co-ordinate axes in

the image plane. This harmless pairwise indeterminacy

should not affect the unique isolation of meaningful compo-

nents defined by the between-pair relationships among the

factors. And the added information provided by the shifting

might allow the columns of bJR to be uniquely determined.

6. DISCUSSION

It is clear that the basic two-way model for factor/component

analysis can be extended to accommodate shifts in latent

factors, as can the basic three-way models Parafac/Cande-

comp and Tucker T3 or T2. Our work so far indicates that this

generalized model provides (essentially) unique solutions,

given certain conditions such as independent factor shifts.

Apparently, the factor shifts can add enough information

distinguishing one factor from another to allow the factors to

be uniquely recovered, much as changes in factor variance

across the third mode allow the Parafac/Candecomp model

to determine a unique, best-fitting set of factors. The differ-

ence, of course, is that the shift parameters fit the non-

linearity (or non-multilinearity) in the data that is due to

positional shifts, while the Parafac third-mode weights de-

scribe linear variations. Another example, although not fully

comparable, of how the incorporation of information on non-

linear factor changes can provide unique resolution of factors

in two-way data, is provided by the incorporation (via

constraints) of knowledge that a particular mode will show

exponential decay of loading magnitudes (see References

[52–57] and references cited therein). In the case of three-

way shifted factor models, both the shift structure and the

three-way multilinear structure can contribute to uniqueness.

This could strengthen the uniqueness properties of the solu-

tion in cases where independent variation of the factors in

either of these two sources of added information was weak or

not present for some pairs of factors.

6.1. Shape changes
With some kinds of data, factor position shifts are often

associated with shape changes. For such data the simple

linear version of the models described here provides only

part of the needed generalization.

How can this further complication be dealt with? Tauler

[24] suggests that we resort to flexible curve resolution

methods. Although these methods do not—unaided—pro-

vide the uniqueness of multilinear models, he points out that

we can often strengthen them by applying other principles

such as selectivity, positivity constraints, etc. to recover the

correct solution. Wulfert et al. [28,58], on the other hand,

focus on the use of prior knowledge about the nature of the

shape changes. A (perhaps modified) version of their poly-

nomial curve fit and banded matrix approach might provide

one possible mechanism by which shape changes could be

accommodated within the present context.

It is possible that, when only a few parameters are required

in order to adequately accommodate the shape variations

likely to occur in a particular situation, then their estimation

could be included as part of the data-fitting process. The

main differences between this approach and that of Wulfert et

al. [28,58] might only be that (a) the non-linear shape changes
*Different models would seem to be necessary when the sound
sources are relatively close to the microphones.

372 R. A. Harshman, S. Hong and M. E. Lundy

Copyright # 2003 John Wiley & Sons, Ltd. J. Chemometrics 2003; 17: 363–378



would be characterized in a somewhat more general and

abstract form, and (b) the parameter values along the shape

change continuum would not be known in advance but

instead would be estimated as part of the curve-fitting

process. However, in a more general ‘black box’ approach

the shape change parameters introduced into the model

might control fundamental geometric characteristics such as

skewness or kurtosis of the ‘humps’ in a given factor.

The Appendix includes a definition of shifting in terms of

a general functional relationship between an index on the

unshifted factor and the corresponding index on the shifted

one, as in
yn ¼ xfðm;pÞ

that is, where

n ¼ fðm; pÞ

and m can vary in either discrete or continuous fashion. In

the cases considered earlier in this paper, we have used the

simple relationship

n ¼ mþ p

Two straightforward examples of possible kinds of general-

ization would be

fðm; pÞ ¼ mþ hðpÞ ¼ mþ apþ bp2 þ � � �

or

fðm; pÞ ¼ mþ hðp1; p2; . . .Þ
¼ mþ ap1 þ bp2p3 þ � � �

Depending on the functional relationship, it may or may not

be possible to approximate variation that includes both

shifting and shape changes.

The addition of parameters to describe shape change

might add too many degrees of freedom to the SF model

and so interfere with its uniqueness, but not necessarily. It

seems plausible that the uniqueness properties of the origi-

nal SF model could be retained so long as the specified factor

transformations have the same effects on linear indepen-

dence as those induced by ‘simple’ position shifts, at least to

the extent that assumptions (i)–(iii) of the theorem described

earlier are still applicable. If these assumptions still do apply,

then the mathematical uniqueness and other properties

explored by the proofs could be carried over—in whole, or

at least in part—to the new domain that includes shape

change. Of course, these extended models do not provide

any improved identifiability if the data do not have the

additional kind of factor variation specified in the model.

Also, one must be careful to avoid indeterminacies within the

non-linear part of the model because of possible trade-offs

among the various added parameters.

6.2. Parametrized non-linear changes
At a higher level of generality, one might consider the shifted

factor model presented here as a specific case of a broader

principle: one can strengthen a model and sometimes obtain

uniqueness of solutions by adding parameters to the model

to fit additional, previously ignored, characteristics of factor

variation. While here we have added parameters specifically

to fit position shifts (and possibly certain shape shifts) of the

factors, it may be that any non-linear factor changes that can

be described by a few parameters could create newly identifiable

models, provided that the factor changes incorporated into

the model fulfil certain conditions. If this conjecture is

correct, then it provides a general approach to finding and

formulating identifiable models; perhaps one could call it

‘Paramfac’ (for parametric factor analysis).

Put another way, the operator symbol ð�Þ need not refer

to shifts of factors or even be limited to sequentially orga-

nized data; it can be considered abstractly as representing an

operation that changes factor loading vectors. A previously

under-identified model extended to incorporate such trans-

formations would not only have the virtue of fitting a new

kind of variation, but also it could become identifiable—

have uniquely determined solutions—whenever the nature

of the added factor changes specified by ð�Þ fulfil certain

algebraic conditions (e.g. maintenance of certain linear in-

dependence and k-rank properties of sets of factors after

applications of the transformation, as assumed in the theo-

rem mentioned earlier). Models that were previously under-

identified, such as the bilinear factor model and the fully

general form of Tucker’s T3 model, might in this way gain

desirable uniqueness properties.
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APPENDIX. ARRAY SHIFTING:
DEFINITIONS, ASSUMPTIONS
AND NOTATION

A.1. The shift operation
We start with an abstract definition of shifting that

allows the sequential mode to consist of either vectors with

discrete elements or continuous functions, but then continue

the discussion concentrating on the discrete case, where the

shifts are integers and refer to subscript position changes.

A.1.1. Shifting (continuous or discrete)
Let x and y be two vectors. The vector y is a shifted version of

x if, for all m,

yn ¼ xm; where n ¼ fðm; sÞ ð28Þ

Here s is a parameter (or parameter set) controlling the

amount (and/or nature) of the shift.

This ‘shifting’ relationship can also be written in terms of

the vectors as

y ¼ gðx; sÞ ð29Þ

The function g shifts x to produce y by transforming its index

values in a manner determined by s.

Generalization to arrays of different orders is straightfor-

ward; it involves shifts of subarrays, controlled by para-

meters that may have more than one index. This will be

explained in more detail below.

A. 1.2. Continuous case
The function f is monotonic and usually linear; typically,

fðm; sÞ ¼ mþ s. Other relationships are possible, however;
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for example, fðm; sÞ ¼ mþ s1 þ s2e1=ðm�sÞ . . . . As shown, the

parameter s can be a set of values.

If m is a point on a section of the real line over some

interval mmin < m < mmax, then the index values that n takes

on are the result of evaluating the function f over that

interval, and this result may or may not be continuous.

Sequential manifest vectors that consist of smooth functions

can be decomposed into combinations of latent factors that

are themselves smooth functions. On the other hand, vectors

in which m and n take on integer values are also covered by

the above definition.

A.1.3. Discrete case
Suppose we have a vector x that contains I elements xi. One

way that we can express the contents of x is

x ¼ ½x1; x2; . . . ; xi; . . . ; xI � ð30Þ

Our notion of discrete ‘shifting’ relies on this type of spatial

representation, in which the values are thought of as as-

signed to successive locations along a left–right or up–down

sequence. The phrase ‘shifting x’ is (in the discrete case) short

for ‘shifting the elements in vector x along the subscript

sequence’, which could be thought of as moving each of the

values in the vector so many places to the right or to the left

in the sequence. More abstractly, it is equivalent to system-

atically increasing or decreasing the quantity assigned to the

subscript i for each value xi in the vector.

The result of the shift operation is a new set of sequen-

tial values that could be used in some expression or

assigned to a new variable. For example, if y is the result

of shifting x by s places, then each element of y can be

expressed as

yi ¼ xiþs ð31Þ

A.1.3.1 Ends of vectors. Several decisions must be

made and conventions established to remove ambiguities

in the notion of ‘shifting’. Most of these have to do with

what happens at the ends of the shifted vector. We consider

three basic approaches: (a) for the purposes of the discus-

sion, the vectors can be considered unbounded in both

directions (‘infinite window’); (b) the vectors resulting

from shifts can be considered to consist of those elements

that are ‘within the window’ both before and after the

shift (‘shrinking window’); and (c) the vectors can be

considered to have fixed length, but with contents deter-

mined by the position of a ‘window’ along a longer version

of that vector (‘sliding window’). The choice among these

interpretations will often not matter, but it can be important

in certain circumstances, for example when considering

the preservation of vector equality after shifting (see

below).

We have chosen to concentrate here on (c), the fixed length

or ‘sliding window’ interpretation.* This leads us to define a

shift operation that has the following properties. The shift

operation does not change the length of the vector to which it

is applied. For example, if the length of x is I, the length of the

shifted version y is also I. After a shift of size s, the relation-

ship between the elements of x and y is as follows. If s ¼ 0,

then y ¼ x. If s> 0, then

y ¼ y1; y2; . . . ; yI
� �

¼ x1þs; x2þs; . . . ; xI; new1; new2; . . . ; news½ �
ð32Þ

If s < 0, then

y ¼ y1; y2; . . . ; yI
� �

¼ news; . . . ; new2; new1; x1; x2; . . . ; xI�absðsÞ
� � ð33Þ

To specify where these new values will come from, any

vector to be shifted is, for the purpose of such shifting,

thought of as a part of a longer vector. For vector x, we

define a vector ‘x-long’ of length L, where L> I, and write it

as x$. Thus we have

x$ ¼ x
$1; x$2; . . . ; x$l; . . . ; x$L

h i
ð34Þ

(We name the ‘long’ vectors using a modified version of the

shorter vector’s name, instead of a new symbol such as u, in

order to emphasize the close relation between the longer and

shorter versions of the vector and to provide a convention for

generating an immediately recognizable name for the longer

version of any vector.)

We next identify the position of x in x$. We define the

scalar p (for x-position) such that

x
$p ¼ x1 ð35Þ

and so

x1; x2; . . . ; xi; . . . ; xI½ � ¼ x
$p; x$pþ1; . . . ; x$pþi�1; . . . ; x$pþI�1

h i
ð36Þ

This provides a source for the new1, new2, etc. in (32) and (33).

Now we have

y ¼ x1þs; x2þs; x3þs; . . . ; xI ; new1; new2; . . . ; news½ �

� x
$pþs; x$pþ1þs; x$pþ2þs; . . . ; x$pþðI�1Þþs

h i
ð37Þ

Elements beyond the ends of the two ‘windows’ (i.e. other

elements in y
$

) are not considered.

Anomalies would arise from a vector v (or, equivalently,

the window defining the vector) being shifted beyond the

end of its corresponding long version v$. This is excluded in

one of two ways: (1) for mathematical purposes, all ‘long’

vectors (x$, y
$

, etc.) are considered infinite in both directions

(of course, this requires that zero and negative subscripts are

allowed); or (2) the long vectors x$, y
$

, etc. are considered

finite but, by assumption, are long enough relative to their

corresponding short vectors to prevent the window that

defines the short vector from going beyond either end of

the long vector in any shift or cumulative sum of shifts under

consideration in a given context (e.g. in a given proof,

analysis, etc.). In other words, the long versions of shifted

vectors are by definition long enough to ensure that there

always exists an element x$pþðI�1Þþs for any occurring positive

shift or positive sum of shifts s, and likewise an element x$p�s
for any occurring negative shift or sum of shifts �absðsÞ.

Although the results in the preceding subsections have

been stated in terms of single vectors, the same idea

*It is easier to define and consider the properties of vector ends in the
discrete case, so we will discuss this case here. The generalization to
the continuous case is handled only by implication.
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generalizes in a natural way to shift operations on matrices,

arrays, multiple columns of a matrix, etc. The definitions

below are constructed in more general form to include

shifting of various subarrays inside larger arrays, including

shifting of vector segments.

A.2. Notation for expressing the shift
operation
To incorporate the shift operation into models, algorithms

and proofs, we need a precise way of specifying shifts. Two

approaches will be discussed here: (i) for array index nota-

tion (AIN) [38], nothing new is needed—we simply review

and perhaps clarify the interpretation to be given to certain

subscript expressions; (ii) for standard matrix notation we

define a ‘shift operator’ and set out rules for its use.

A.2.1. Expressing the shift operation in array index
notation
If one is using AIN [38], there is no need to define new

symbols to represent shifted objects. AIN explicitly incorpo-

rates index information into the array names, and so shifted

objects can be represented by simply indicating a function

altering the array index information of the originally un-

shifted object. For example, if the vector yI is the result of

shifting vector xI by s, we can simply write

yI ¼ x½Iþs� (38)

For simplicity, let us return to a discrete case, where I

consists of integer subscript values. To represent the col-

umn-shifted matrix sj
ðXÞ, the matrix equation

Y ¼
sj

ðXÞ

becomes the AIN equation

yIJ ¼ x½Iþsj�J (39)

When interpreting (39), we make use of the AIN principle

that multiple occurrences of the same non-italic index sym-

bol within a given AIN expression are interpreted as multi-

ple occurrences of the same generic index value (Rule 2a of

Reference [38]). Here the match is between the s subscript j

and an implied element of J. No new principle is really

needed, since this type of compact expression can always be

replaced by a longer one that uses parentheses in the same

way as in composite elements (Rule 3b of Reference [38]). For

example, the right-hand side of (39) may be defined as

x½Iþsj�J �
�
x½Iþsj�j

�
J (40)

It follows that, for each column, yIj ¼ x½Iþsj�j, and so

yIJ ¼ x½Iþsj�J

¼
�
x½Iþs1�1 x½Iþs2�2 x½Iþs3�3 � � � x½IþsJ�

�
(41)

(recall that J is the upper end of the range of j). In other

words, as J goes through its range of values, the j on the shift

size sj goes through the same values.

A.2.1.1. Examples. To represent a three-way array in

which lateral (I�K) slabs are shifted along the levels of

mode A, we could write

yIJK ¼ x½Iþsj�JK (42)

On the other hand, for one with individually shifted column

fibers, we could write

yIJK ¼ x½Iþsjk�JK (43)

If we wanted to very explicitly express the source of

the values of the shift subscripts, as in (40), Equations

(42) and (43) could be written as yIJK ¼
�
x½Iþsj�jK

�
J

and

yIJK ¼
�
x½Iþsjk�jk

�
JK

respectively.

To demonstrate the flexibility of this kind of shift notation,

we consider the case where the elements in these (I�K) slabs

are shifted diagonally within the plane in which the slabs lie.

These shifts could be written as

yIJK ¼ x½Iþs1j�j½Kþs2j�

� �
J (44)

Here the shift values are stored in a J� 2 matrix with the first

column giving the shift amounts in mode A and the second

column giving the shift amounts in mode C. Once again

using the simplified notation as in (40) Equation (44) can be

expressed as

yIJK ¼ x½Iþsj1�J½Kþsj2� (45)

A.2.1.2. Summation of matching indices. A final

note: when performing summation over matching indices

(as is done in AIN following the ‘Einstein convention’ [38]),

the matching is done on the index value before it is shifted or

otherwise transformed. Thus

u Pþ7½ �v Pþ9½ � ¼ u½pþ7�
� �

P
v½pþ9�
� �

P

¼
X
p

u pþ7½ �v pþ9½ � ¼ w
(46)

This point is only going to matter, or be comprehensible, to

those readers who make use of array notation when working

with shifted vectors or arrays.

A.2.2. Expressing the shift operation in matrix
notation: the shift operator

A.2.2.1. Definition of the operator. In matrix nota-

tion the shifting (subscript incrementing or decrementing)

operation will be designated by the symbol

ð47Þ

which is a script ‘S’ (standing for ‘shift’). We define a shift s

for a single element in x as

s
ðxiÞ � xiþs

and a shift s for the vector x as

s
ðxÞ � xi ! xiþs for i ¼ 1; 2; . . . ; I ð48Þ

More generally, we now define a shift operator (or shifting

function) ð�Þ that takes as arguments an array object to be

shifted, a (smaller) object containing shift sizes, and an

expression defining the shifted part.
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The notation has the general form

�

�

ð�Þ ð49Þ

where � is the array to be operated on, � contains the shift

sizes and � defines the ‘unit of shifting’ (the size and shape of

a partition in � containing elements that are shifted together

as one unit). The arguments may in general be arrays of any

order (scalar, vector, matrix or higher-way), except that the

sum of the orders of � and � should equal the order of �.

The fully explicit form of notation defined in (49) is not

always needed. When the information that would be pro-

vided by � and/or � is already clear from the context, these

arguments could be omitted. Sometimes � need not be

specified if � and � are: its shape (order) can be deduced

from their order numbers, and its size from � or the context.

Likewise, � can be deduced from � and �. However, when

the order of � is greater than two, explicitly representing �

and � is usually recommended.

Sometimes a further simplification is used: � is expressed

in ‘shorthand’ form, where only the appropriate subscript is

given, e.g. jð�Þ. In this case the shift values are assumed to

reside in part of an array of shift values that should be

obvious by the context (often a vector taken from the shift

matrix S). The part of the subarray from which the values are

taken is designated by the subscript(s) used in the ‘short-

hand’ (e.g. often j � sj
).

A.2.2.2. Examples. A few examples will help clarify

the meaning and usage of the shift operator.

A.2.2.2.1. Elements and segments. As noted ear-

lier, a shift applied to a single element in a vector x may be

specifically denoted as 5ðx2Þ ¼ x7, for example, or more

generally as wþyðxiÞ ¼ xiþwþy.

A.2.2.2.2. Vectors. The simplest generalization con-

sists of shifting the position of elements in a single vector.

To represent the vectors that result when each element in x is

shifted by, say, five places or by uþ vþ 1 places, we have

5

xð Þ �

..

.

x1þ5

x2þ5

..

.

xiþ5

..

.

2
6666666664

3
7777777775

and
uþvþ1

ðxÞ �

..

.

x1þuþvþ1

x2þuþvþ1

..

.

xiþuþvþ1

..

.

2
6666666664

3
7777777775
ð50Þ

Note that � has been omitted here as unnecessary; in its fully

explicit form the expression would be x
uþvþ1ðxÞ to specify

that x is shifted.

A.2.2.2.3. Matrices. A column-shifted matrix can be

represented by assembling vectors that are expressed as in

(50) into successive column positions in a partitioned matrix.

However, it is more flexible and compact to use the potential

for greater generality implicit in (49) to express the applica-

tion of successive elements from a vector of shifts to the

successive columns of the matrix. Let X be an I� J matrix and

v be a vector of length J, with each element of v giving the

shift size for the corresponding column in X. Then we have

three alternative representations:

v
ðXÞ �

�
v1

ðx1Þ j
v2

ðx2Þ j � � � j
vj

ðxjÞj � � �
�

�

..

. ..
. ..

.

x1þv1 x1þv2 x1þvj
x2þv1

x2þv2
x2þvj

..

. ..
. . .

. ..
.

xiþv1
xiþv2

xiþvj

..

. ..
. ..

. . .
.

2
6666666666664

3
7777777777775

ð51Þ

Again, � is unnecessary, but, if specified in the left and center

expressions of (51), would be xj to indicate that columns of

the X matrix are shifted. Note that � is respectively a vector

and a scalar in the left and centre expressions of (51), and so

the sum of the orders of � and � equals � in both.

A.2.2.2.4. Three-way and higher-way arrays. In

higher-way cases we are faced with new choices. For exam-

ple, if we want to indicate independent shifting of each fiber

(e.g. each column) of a three-way array, � is a matrix rather

than a vector, with one matrix element for each column in the

array. On the other hand, if we want to shift whole slabs of

the array at once, � is a vector with one element for each slab.

Specifying � as well removes any ambiguity.

For example, suppose we independently shift the JK

columns of an I� J�K three-way array X. We denote � by

S, a J�K matrix of shift sizes, and � by xjk, a column vector of

I elements taken at levels j and k of the second and third

modes of X respectively. Then the shifted version of X is

represented as
xjk

S

ðXÞ ð52Þ

In (52) we can see that the ‘shift unit’ x is a vector, and its jk

subscript indicates the X subscripts to be held fixed when

determining it (the missing subscript i indicates the elements

that are to be shifted together, i.e. a column of X. The matrix

S contains a shift size for each of the JK shift units in X. Note

that, unless the context makes it clear that S is J�K, one

needs to specify the shift unit as well to clarify that it is a

column, not a row or ‘tube’ of X (specifying only the shift

unit would allow one to deduce the size of S, however).

Now suppose instead that we shift the K columns at level j

by the same amount—in other words, suppose we shift

lateral slabs of the array. Then our expression is

Xj

s
ðXÞ ð53Þ

where s is a J-length vector of shift sizes, one for each of the J

slabs, and Xj is the I�K matrix of elements taken from the jth

lateral slab of X that are shifted together (i.e. the shift unit).

Again, explicitly denoting both the shift size and shift unit

removes any ambiguity.

In the above examples the shift size vector or matrix is not

subscripted, but a subscripted shift vector is often used in

this paper when discussing various shifted factor models;

such notation implies that the shift vector is part of a shift

matrix. This occurs when we represent the (I�K) jth lateral
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slab of X in shifted factor notation as

Xj ¼
sj

ðAÞhbjiC0 ð54Þ

or

Xj ¼
j
ðAÞhbjiC0 ð55Þ

where A is the I�R matrix of mode A factor loadings; bj is

row j from B, the J�R matrix of mode B factor loadings, and

hbji � diagðbjÞ [41]; C is the K�R matrix of mode C load-

ings; and R is the number of factors. Mode A is defined to be

the shifted mode, and the shift unit is a column of A; the shift

unit is not stated explicitly here, but, if so, would be ar. The

shift size sj is an R-length vector, one element for each

column of A, and the subscript j corresponds to the X

subscript and not the column of A. In other words, there

are J different s vectors, one for each slab of X, and s is row j

of the J�R shift matrix S.

A.3. Algebraic properties of the shift operator

A.3.1. Multiple shifts of a given vector
Considered as an algebraic operation, the shift operation is

essentially just addition, except that it is applied to subscript

values rather than to variable values. Consequently, shifts of

shifted expressions display the same algebraic properties as

addition. Like addition, the shift operation is commutative,

distributive and associative. For example,

t s
ðXÞ

� �
¼

s t
ðXÞ

� �
ð56Þ

s
ðxþ yÞ ¼

s
ðxÞ þ

s
ðyÞ ð57Þ

s t u
ðxÞ

� �� �
¼

sþt u
ðxÞ

� �

¼
s tþu

ðxÞ
� �

¼
sþtþu
ðxÞ

ð58Þ

For any given shift there is an inverse shift, which is of course

equivalent to shifting by the negative of the given shift. That is,

�1
s ðxÞ ¼ -sðxÞ ð59Þ

There is also an identity shift

0ðxÞ ¼ x ð60Þ
and so we can write

-s sðxÞð Þ ¼ 0ðxÞ ¼ x ð61Þ
These properties allow the multiple applications of a shift

operator to a given vector to be interpreted in a natural way.

A.3.2. Shifts of two vectors: vector equality
before and after the shifts
Mathematical statements of equality between two shifted

vectors u and v (or between a shifted and an unshifted

vector) are true or false in the usual sense of vector equality

(i.e. true if and only if ui ¼ vi for all valid i).

However, there are different logical relationships between

statements of equality of preshifted vectors and statements

of equality of postshifted vectors (i.e. statements involving

maintenance of equality under shifting) depending on which

model of vector ends one adopts.

Under the ‘infinite window’ interpretation, vector equality

before shifting both implies and is implied by equality after

shifting. Thus, when the shifted vectors are treated as

unbounded, we can write

u ¼ v$ ðuÞ ¼ ðvÞ ð62Þ
Under the ‘shrinking window’ interpretation, vector equal-

ity before shifting implies equality after shifting, but not vice

versa. Symbolically,

u ¼ v! ðuÞ ¼ ðvÞ ð63Þ
Finally, under the ‘sliding window’ interpretation, at least as

defined in Section A.1.3.1, there is no implication in either

direction:
u ¼ v X! ðuÞ ¼ ðvÞ ð64Þ

However, there are circumstances where it is reasonable to

assume (62), i.e. that is, to stipulate the maintenance of

equality, even in the ‘sliding window’ case. This is equiva-

lent to assuming that u$upþi�1 ¼ v$vpþi�1 for all subscript

values i that are defined for u and v.

REFERENCES

1. Malinowski ER. Factor Analysis in Chemistry (2nd edn).
Wiley: New York, 1991.

2. Cattell RB. The Scientific Use of Factor Analysis in Beha-
vioral and Life Sciences. Plenum: New York, 1978.

3. Gampp H, Maeder M, Meyer CJ, Zuberbuhler AD. Cal-
culation of equilibrium constants from multiwavelength
spectroscopic data—III. Talanta 1985; 32: 1133–1139.

4. Sanchez E, Kowalski BR. Generalized rank annihilation
factor analysis. Anal. Chem. 1986; 58: 496–501.

5. Wilson BE, Sanchez E, Kowalski BR. An improved algo-
rithm for the generalized rank annihilation method. J.
Chemometrics 1989; 3: 493.

6. Geladi P, Wold S. Local principal component models,
rank maps and contextuality for curve resolution and
multi-way calibration inference. Chemometrics Intell.
Lab. Syst. 1987; 2: 273–281.

7. Karjalainen EJ, Karjalaien UP. Component reconstruc-
tion in the primary space of spectra and concentra-
tions—alternating regression and related direct
methods. Anal. Chim. Acta 1991; 250: 169–179.

8. Karjalainen EJ, Karjalaien UP. Data Analysis for Hyphe-
nated Techniques, vol. 17 of Data Handling in Science and
Technology. Elsevier: Amsterdam, 1996.

9. Bro R, de Jong S. A fast non-negativity-constrained linear
least squares algorithm for use in multi-way algorithms.
J. Chemometrics 1997; 11: 393–401.

10. Tauler R, Smilde A, Kowalski BR. Selectivity, local rank,
three-way data-analysis and ambiguity in multivariate
curve resolution. J. Chemometrics 1995; 9: 31–58.

11. Bro R. Multi-way Analysis in the Food Industry: Models,
Algorithms and Applications. University of Amsterdam:
Amsterdam, 1998 (http://www.models.kvl.dk/users/
rasmus/thesis/thesis.html).

12. Eysenck HJ. Criterion analysis—an application of the
hypothetico-deductive method to factor analysis. Psy-
chol. Rev. 1950; 57: 38–53.

13. Digman JM. The Procrustes class of factor-analytic trans-
formations. Multivar. Behav. Anal. 1967; 2: 89–94.

14. Harman HH. Modern Factor Analysis (3rd edn rev.). Uni-
versity of Chicago Press: Chicago, IL, 1976.

15. Horst P. Factor Analysis of Data Matrices. Holt, Rinehart
and Winston: New York, 1965.

16. Kaiser HF. The varimax criterion for analytic rotation of
factor analysis. Psychometrika 1958; 23: 187–200.

17. Cattell RB. ‘Parallel proportional profiles’ and other
principles for determining the choice of factors by rota-
tion. Psychometrika 1944; 9: 267–283.

Shifted factor analysis—Part I 377

Copyright # 2003 John Wiley & Sons, Ltd. J. Chemometrics 2003; 17: 363–378



18. Gorsuch RL. Factor Analysis (2nd edn). Lawrence
Erlbaum Associates: Hillsdale, NJ, 1983.

19. Coppi R, Bolasco S (eds). Multiway Data Analysis. North-
Holland: Amsterdam, 1989.

20. Law HG, Snyder Jr, CW, Hattie JA, McDonald RP (eds).
Research Methods for Multimode Data Analysis. Praeger:
New York, 1984.

21. Harshman RA, Lundy ME. PARAFAC: parallel factor
analysis. Comput. Statist. Data Anal. 1994; 18: 39–72.

22. Leurgans S, Ross RT. Multilinear models: applications in
spectroscopy. Statist. Sci. 1992; 7: 289–319.

23. Sidiropoulos N, Liu X. PARAFAC methods for blind
beamforming—Part I. Identifiability. IEEE Trans. Signal
Process. In press.

24. Tauler R. Multivariate curve resolution applied to sec-
ond order data. Chemometrics Intell. Lab. Syst. 1995; 30:
133–146.

25. Bro R, Andersson CA, Kiers HAL. PARAFAC2—Part II:
Modeling chromatographic data with retention time
shifts. J. Chemometrics 1999; 13: 295–309.

26. Hong S, Harshman RA. Shifted factor analysis. Part III.
N-way generalization and application. J. Chemometrics
2003; 17: 389–399.

27. Field AS, Graupe D. Topographic component (parallel
factor) analysis of multichannel evoked potentials: prac-
tical issues in trilinear spatiotemporal decomposition.
Brain Topogr. 1991; 3: 407–423.

28. Wulfert F, Kok WT, Smilde AK. Influence of temperature
on vibrational spectra and consquences for the predic-
tive ability of multivariate models. Anal. Chem. 1998;
70: 1761–1767.

29. Cattell RB. The structuring of change by P-technique and
incremental R-technique. In Problems in Measuring
Change, Harris CW (ed.). University of Wisconsin Press:
Madison, WI, 1963; 167–198.

30. Molenaar PCM. A dynamic factor analysis for the analy-
sis of multivariate time series. Psychometrika 1985; 50:
181–202.

31. Prazen BJ, Synovec RE, Kowalski BR. Standardization of
second-order chromatographic/spectroscopic data for
optimum chemical analysis. Anal. Chem. 1998; 70: 218–225.

32. Fraga CG, Prazen BJ, Synovec RE. Comprehensive two-
dimensional gas chromatography and chemometrics for
the high-speed quantitative analysis of aromatic isomers
in a jet fuel using the standard addition method and an
objective retention time alignment algorithm. Anal.
Chem. 2000; 72: 4154–4162.

33. Vogels JTWE, Tas AC, Venekamp J, Van Der Greef J. Par-
tial linear fit: a new NMR spectroscopy preprocessing
tool for pattern recognition applications. J. Chemometrics
1996; 10: 425–438.

34. Nielsen N-PV, Carstensen JM, Smedsgaard J. Aligning of
single and multiple wavelength chromatographic pro-
files for chemometric data analysis using correlation
optimized warping. J. Chromatogr A 1998; 805: 17–35.

35. Bylund D, Danielsson R, Malmquist G, Markides KE.
Chromatographic alignment by warping and dynamic
programming as a pre-processing tool for PARAFAC
modeling of liquid chromatography–mass spectrometry
data. J. Chromatogr. A 2002; 961: 237–244.

36. Westad F, Martens H. Shift and intensity modeling in
spectroscopy—general concept and applications. Che-
mometrics Intell. Lab. Syst. 1999; 45: 361–370.

37. Horn BKP, Schunck BG. Determining optical flow. Arti-
fic. Intell. 1981; 17: 185–203.

38. Harshman RA. An index formalism that generalizes the
capabilities of matrix notation and algebra to n-way
arrays. J. Chemometrics 2001; 15: 689–714.

39. Tucker LR. The extension of factor analysis to three-
dimensional matrices. In Contributions to Mathematical
Psychology, Gulliksen H, Frederiksen N (eds). Holt,
Rinehart and Winston: New York, 1964; 110–127.

40. Hong S, Harshman RA. Shifted factor analysis. Part II.
Algorithms. J. Chemometrics 2003; 17: 379–388.

41. Harshman RA, Hong S. ‘Stretch’ vs. ‘slice’ methods for
representing three-way structure via matrix notation.
J. Chemometrics 2002; 16: 198–205.

42. Harshman RA. Foundations of the Parafac procedure:
models and conditions for an ‘explanatory’ multi-modal
factor analysis. UCLAWorking Papers Phonet. 1970; 16: 1–
84. http://publish.uwo.ca/~harshman/wpppfac0.pdf.

43. Harshman RA. Determination and proof of minimal
uniqueness conditions for Parafac1. UCLA Working
Papers Phonet. 1972; 22: 111–117. http://publish.uwo.ca/
~harshman/wpppfac1.pdf.

44. Hong S. Shifted factor analysis: a test of models and algo-
rithms. Master’s Thesis, University of Western Ontario,
London, ON, 1997.

45. Harshman RA, Lundy ME. The Parafac model for three-
way factor analysis and multidimensional scaling. In
Research Methods for Multimode Data Analysis, Law HG,
Snyder Jr, CW, Hattie JA, McDonald RP (eds). Praeger:
New York, 1984; 122–215. http://publish.uwo.ca/
~harshman/lawch5.pdf.

46. Carroll JD, Chang JJ. Analysis of individual differences
in multidimensional scaling via N-way generalization
of ‘Eckart–Young’ decomposition. Psychometrika 1970;
35: 283–319.

47. Kiers HAL. Towards a standardized notation and termi-
nology in multiway analysis. J. Chemometrics 2000; 14:
105–122.

48. Kroonenberg PM. Three-mode Principal Component Analy-
sis. DSWO Press: Leiden, 1983.

49. Harshman RA, Lundy ME. Data preprocessing and the
extended Parafac model. In Research Methods for Multi-
mode Data Analysis, Law HG, Snyder Jr, CW, Hattie JA,
McDonald RP (eds). Praeger: New York, 1984; 216–284.
http://publish.uwo.ca/~harshman/lawch6.pdf.

50. Kiers HAL, Smilde AK. Constrained three-mode factor
analysis as a tool for parameter estimation with sec-
ond-order instrumental data. J. Chemometrics 1998; 12:
125–147.

51. Kruskal JB. Factor analysis and principal components:
bilinear methods. In International Encyclopedia of Statis-
tics, Kruskal WH, Tanur JM (eds). Free Press: New York,
1978; 307–330.

52. Windig W, Antalek B. Direct exponential curve resolu-
tion (DECRA): a novel application of the generalized
rank annihilation method for a single spectral mixture
data set with exponentially decaying contribution pro-
files. Chemometrics Intell. Lab. Syst. 1997; 37: 241–254.

53. Roy R, Kailath T. Estimation of signal parameters via
rotational invariance techniques. IEEE Trans. Acoust.,
Speech, Signal Process. 1989; 37: 984–995.

54. Windig W, Antalek B, Robbins MJ, Zumbulyadis N,
Heckler CE. Applications of the direct exponential curve
resolution algorithm (DECRA) to solid state nuclear
magnetic resonance and mid-infrared spectra. J. Chemo-
metrics 2000; 14: 213–227.

55. Sidiropolous ND. Generalizing Carathéodory’s unique-
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