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Decomposition of a matrix as a sum or linear combination of outer product matrices
underlies both the bilinear methods (factor analysis, principal components analysis, and
correspondence analysis) and the fundamental concept of matrix rank. The decomposition of a
3-way array in the corresponding manner underlies PARAFAC, and can be used to define rank of
3-way arrays. In fact, decomposition and rank can be generalized to N-way arrays. The generali-
zations are so natural and mathematically appealing that they have been independently introduced
several times in the mathematical literature. The many differences between 3-way arrays and 2-
way arrays with respect to decomposition and rank are discussed.

One difference concerns rotational uniqueness of decompositions. For 2-way arrays, this
holds only in trivial cases, but for 3-way arrays, it holds for many decompositions of interest,
including most PARAFAC solutions. This is why PARAFAC solutions generally do not face the
rotation problem, even though factor analysis solutions do. Many people consider the rotational
uniqueness of PARAFAC solutions to be a major advantage of this model.

This paper also introduces the dimensionality vector of N-way arrays, which is closely
connected to the number of factors used in 3-mode facior analysis. There is a final section
explaining how various concepts are related to data analysis models.

1. INTRODUCTION

Rank is a fundamental property of matrices. For those interested in three-way arrays, it is
natural to ask how rank generalizes to three-way and N-way arrays. This paper discusses a gen-
eralization that was introduced in (Kruskal, 1976) and further discussed in (Kruskal, 1977). This
generalization, which is based on the decomposition of the array into outer product arrays, is so
natural and mathematically appealing that it was independently introduced at least three times
before 1976 in the mathematical literature, most recently in computational complexity theory of
bilinear operations (see papers in the 1970’s and 1980°s by authors such as V. Strassen, V. Ya.
Pan, and J. Ja’ Ja’). It also discusses the uniqueness of the associated decompositions of 3-way
arrays, based on theorems from (Kruskal, 1977) and extensive experimental calculations by
Harshman and Lundy (unpublished). After that it introduces another concept that is much
simpler than rank, the dimensionality vector of an array.

Rank, uniqueness theorems, and dimensionality vectors all turn out to be useful to the
data analysis of three-way arrays. The final section expiains the relevance and importance of
these concepts to several models used in this area.
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2. RANK AND N-ADIC DECOMPOSITIONS

One of the most fundamental concepts of matrix theory is the rank of a matrix. Although
many parts of matrix theory have long ago been generalized to 3-way and N-way arrays in con-
nection with tensor theory and Grassman algebras, the concept of rank was not included in these
developments. For anyone interested in 3-way arrays, it is natural to ask how the concept of rank
can be generalized to 3-way and N-way arrays.

An N-array means an N-way array. The value of N is the order of the array. Clearly

vector = 1-array = array of order 1

matrix = 2-array = array of order 2.
The outer product of N vectors a, b, c, ... with elements g;, bj, ¢y, ... is the array a®b®c - - -
whose elements are a;b;c, - - - . Note that N can be 2, 3, 4, ... or even 1. Define an outer pro-
duct array to be any array which can be expressed as an outer product. Every l-array is an outer
product array; a 2-array is an outer product array if and only if it is a matrix of rank < 1. The
word dyad is widely used for an outer product matrix. In addition, triad is used here for an outer
product 3-array, and N-ad for an outer product N-array.

An N-adic decomposition of an array X is a sum or a linear combination of N-ads which
is equal to X:

R
X=Y a,®b,®c - )

r=1

The rank or the number of factors of the decomposition is the number R of terms in it. A sum
can be converted to a linear combination by inserting coefficients of 1, and a linear combination
can be converted to a sum by absorbing the coefficients in one of the factors, so the ambiguity in
the definition makes no difference. A rank R dyadic decomposition of a matrix X is easily seen
to be the same thing as a factorization of X into a product ab’ of two matrices, where a and b
each have R columns.

The rank of an N-array X is the smallest number R such that X has an N-adic decomposi-
tion of rank R.

For order 2, this definition reduces directly to one of the many classical definitions of matrix
rank, namely, the rank of a matrix X is equal to the smallcst number R such that X has a dyadic
decomposition of rank R. Every non-zero 1-array has rank 1. For any N, an N-array has rank 0
if and only if the array is 0, and has rank 1 if and only if the array is a non-zero N-ad.

The rank of a 3-array is the smallest number of triads needed to decompose it. To illus-
trate the meaning of this definition, consider the simplest case: 2x2x2 arrays. The maximum
possible rank is 3, though proving this fact would require several pages. The four ranks are illus-
trated.

Rank is the same concept for arrays of all orders, not a series of separate concepts for
matrices, 3-arrays, 4-arrays, etc. The meaning of this statement is illustrated by an example.
Consider a 2-array X that is I XJ. Define a 3-array Y that is 1x/ xJ whose values are just those
of X, and define a 4-array Z that is 1x1x/xJ whose values are also just those of X. In formal
mathematical terms X, Y, and Z are all different, since they have orders 2, 3, and 4 respectively,
so the ranks of X, Y, and Z could all be different without damage to the meaning of rank. In fact,
however, arrays of different formal order that have identical elements can be proved to have the
same rank. Thus rank is a single concept whose value depends on the entries of the array but not
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on its order.

3. PROPERTIES OF RANK AND N-ADIC DECOMPOSITION

Arrays of all orders behave just like matrices with respect to many simple properties of
rank. For example, regardless of order, rank(X)=rank(kX) for any scalar k #0, and rank(X+Y) <
rank(X) + rank(Y). Also, 3-arrays behave like matrices with respect to some intermediate proper-
ties of rank. For example, a famous lower-bound theorem of Frobenius (see, e.g. (Mirsky,
1955),)

rank(X) 2 rank(UX) + rank(XW) —rank(UXW) @
for all size-compatible matrices X, U, V

can be generalized to 3-arrays (see Kruskal, 1977) and probably to arrays of all orders. However,
with respect to some deeper properties of rank, arrays of order 3 behave very differently than
arrays of order 2.

Difference 1: There are straight-forward algorithms to compute the rank of a matrix, but
there is no known algorithm for computing the rank of a 3-array.

Difference 2: It is fairly easy to determine the rank of a matrix, but it is usually
extremely difficult to determine the rank of a 3-array, even one that looks regular. There is a
much-studied 9x9x9 array whose rank has been bounded between 18 and 23 but is still
unknown.

Difference 3: The rank of a matrix of real numbers does not change if it is considered to
be a complex matrix that just happens to contain entries with no imaginary part. However, the
rank of a 3-array of real numbers does change if it is considered to be a complex array. For
example, the last 2x2x2 array shown above has rank 2, not 3, when considered as a complex
array. In general, the rank of a 3-array depends on the base field being used, i.e., the field from
which the elements are drawn when forming triads. In this paper, the base field is always the
field of real numbers.

Difference 4: Let R,(/,J) and Ry (7, J, K') be the maximum possible rank of /xJ
and /xJxK arrays respectively. It is well-known that R, (/,J)=min(],J), but

Rpax(1,J, K) is unknown and difficult to determine. The following weak inequalities are
known: .
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max(/, J, K)SR (1, J, K)Y<min(lJ, IK, JK).
One significant special case has been determined (Ja’ Ja’, 1479; Kruskal, future), namely,

Rnax(2,J, K)=m+min(m,n) where
m=min(J, K) and
n= lmax(J, K)/2},

where |x] means the greatest integer < x. For J=K, this reduces to [3772). The proofs by
Ja’ Ja’ and by Kruskal, which are entirely different, are both long and complicated. It has also
been proved (Kruskal, future) that R ,c(3, 3,3)=35. Even this proof is long.

Difference 5: This difference comes as a real surprise. In the I/-dimensional space of
I xJ matrices, almost all matrices have maximum rank. Here “almost all” is used in its standard
mathematical meaning, i.e, the complementary set (of matrices not having maximum rank) has
volume 0. On the other hand, consider the smallest nondegenerate 3-arrays, those that are
2x2x2. They form an 8-dimensional space. As noted above, the maximum rank is 3, and of
course the set A3 of arrays of rank 3 has non-zero volume, but the set A, of arrays of rank 2
also has non-zero volume! In fact, by a Monte Carlo calculation, A, fills about 79% of the space
and A fills only about 21%. The set of arrays of rank <1 has zero volume. (The percentages
actually refer to arrays on any fixed sphere around the origin in 8-space. The extrapolation to all
arrays is justified because rank is constant over rays from the origin. The calculation was per-
formed by filling 1000 2x2x2 arrays with random normal numbers, and calculating a certain
polynomial that is defined only for 2x2x2 arrays: If it is positive, the array has rank 2; if nega-
tive, rank 3, and if O, the rank can be 0, 1, 2, or 3. The O case, which is expected to occur with
probability 0, did not occur.)

The fact that A; and A, both have non-zero volume has an important practical conse-
quence, which is described in Kruskal, Harshman, and Lundy (this volume) under the discussion
of degenerate solutions to the PARAFAC model.

Difference 6: The dyadic decomposition of a rank R matrix is never unique, though
decompositions of this kind sometimes achieve uniqueness by means of added constraints. In
contrast, the triadic decomposition of a rank R 3-array is frequently unique. A precise definition
of uniqueness and an often applicable theorem guaranteeing it for 3-arrays are presented below, in
Sections 5 and 6.

The assertion that dyadic decompositions are never unique might seem to contradicted by
the uniqueness properties of the Singular Value Decomposition (SVD) and of the Eigenvector
Decomposition (ED), since each of these is associated with a dyadic decomposition that shares
the uniqueness properties. In each of these cases, however, the uniqueness can be ascribed to
added constraints, as we now explain. Suppose that X=P D Q’ is the SVD of X, so P and Q
each have orthonormal columns and D is square and diagonal with positive entries on the main
diagonal. Then X is equal to a linear combination of the outer products of the columns of P with
the corresponding columns of Q, using coefficients from D. The well-known uniqueness property
of the SVD when the diagonal entries of D are unequal yields uniqueness for this dyadic decom-
position. The orthogonality of the columns of P and of the columns of Q are added constraints
that suffice to provide this uniqueness.

Similarly, if X=E AE’ is the Eigenvalue Decomposition of a square matrix D that hap-
pens to have a complete set of eigenvalues, then X is equal to a linear combination of the outer
products of each column of E with itself, using coefficients from A. The well-known uniqueness
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property of the ED when the diagonal entries of A are unequal yields uniqueness for this dyadic
decomposition. The equality of the two factors of each dyad is an added constraint that suffices
to provide this uniqueness.

4. GENERALIZING ROW AND COLUMN RANK

Not only do the concepts of row rank and column rank generalize to 3-arrays and N-
arrays, but the generalized concepts are of great practical importance when dealing with 3-arrays,
for a reason mentioned below. Recall that the row rank is a property of the set of rows of a
matrix, likewise for the column rank, and that row rank = column rank = rank. All these proper-
ties generalize in a natural way.

A 2-array has sets of 1-arrays, namely, rows and columns. Similarly, an N-array has sets
of (N—1)-arrays, which are called slabs. A 2-array has 2 such sets; an N-array has N such sets.
Specifically, for each v from 1 to N, define the set of slabs in the v-th direction. Each of these
slabs is formed by fixing the v-th subscript of X and letting all the other subscripts vary. Each
slab is an (N—1)-array. For a 2-array, slabs in direction 1 are rows and slabs in direction 2 are
columns.

Now we need a property that applies to a set of slabs, i.e., arrays. The first property that
comes to mind, based on the matrix case, is dimensionality. This is used below in defining the
dimensionality vector of an array. Here however another property is used, one which is just the
same as dimensionality when applied to the matrix case, namely, rank of a set of arrays:

The rank of a set of N-arrays {Y,} is the smallest number R such that every array Y, can

be written as a linear combination of a single collection of R N-ads. [Here it is necessary

to use linear combination and not sum, since different arrays Y, may need different
coefficients. ]

Now the analogues of row rank and column rank of X are rank,(X) for each v from 1 to
N, where

rank, (X) is the rank of the set of slabs of X in the v-th direction.

For a 2-array X, rank, (X) is row rank, and rank,(X) is column rank. It is not hard to prove the
following lemma.

Lemma 1: rank, (X)=rank(X) for all v.

Working with simple 3-arrays X for which it is possible to determine the rank, I have always
found it easier in practice to use the definition of rank, (X) for this purpose than to work directly
with the original definition of rank. Furthermore, there are 3 different approaches available,
according to whether one looks at rank; (X), ranky(X), or ranks(X). It is often much easier to
deal with one of these instead of another.

5. ROTATIONAL UNIQUENESS: BASIC CONCEPTS

Great attention has been paid in data analysis to decomposing data matrices into outer
products,

b

X

]

R
2 4,®b,, 3
r=1
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where each a, and b, is a vector. This decomposition underlies factor analysis, principal com-
ponents analysis, correspondence analysis, and some other methods. Attention has also been paid
to decomposing data 3-arrays into outer products in the same way,

- R
Y=Y =Y a®b®c , 4)

r=1

where each a,, b,, and ¢, is a vector. This decomposition underliecs PARAFAC and CAN-
DECOMP. In both equations, each outer product corresponds to one factor, i.e., to one source of
influence. Assuming there are no superfluous terms, R is the rank of the fitted array in both
cases.

There are some obvious elementary changes that can be made in any N-adic decomposi-
tion, like the two above, without changing its value. First, the factors or outer products can be
permuted or relabeled, e.g., factor 1 is renamed factor 4, etc. Second, multipliers that cancel each
other can be inserted, e.g., if a, B,v,=1 for all r, then

;, = 2 (a,a,)® (Brbr) ® (Ycr) - 5)

Two N-adic decompositions are equivalent if they have the same rank and one can be
obtained from another by elementary changes.

A rank R N-adic decomposition of an N-array X is rotationally unique, often shortened to
just unique, if all rank R decompositions of X are equivalent to it.

(If equivalence were not restricted to decompositions of the same rank, it would be necessary to
include other operations among the elementary changes, such as adjoining a zero N-ad to the
decomposition, and breaking one of the existing N-ads into several N-ads by expressing one fac-
tor of it as a sum of several vectors.)

By and large, decompositions of rank 1 (and 0) are unique regardless of rank, as the fol-
lowing lemma states precisely.

Lemma 4i: For any N, a rank 1 N-adic decomposition of an array is unique if the array
contains no zero slabs in any direction.

This elementary fact is called Lemma 4i because it is essentially the same as Theorem 4i from
Kruskal (1977). :

It happens to be a mathematical(fact that both dyadic and triadic decompositions are usu-
ally unique if their ranks are small enoagh, and are literally never unique if their ranks are large
enough. However, the dividing line&e\tween small and big rank are very different for dyadic
and triadic decompositions. For dyadic decompositions, the dividing line is always 1. A dyadic
decomposition is unique under mild i:,ions if it has rark < 1 by Lemma 4i, while it is easily
proved that a dyadic decomposition is never unique if it has rank > 2. For triadic decomposi-
tions, the dividing line increases with the size of the array For 2x2x2 arrays, it can be proved
that a rank 2 decomposition of a rank 2 array is always unique, while a rank 3 decomposition is
never unique. For R XR xR arrays, Theorem 4a shows that many decompositions of rank
[3R/2-1] are unique, while Conjecture 4a suggests that none of higher rank are unique.
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6. ROTATIONAL UNIQUENESS: SOME THEOREMS

A series of results that prove rotational uniqueness and that subsume almost all previous
uniqueness results occur in (Kruskal, 1977), though a fairly simple independent result meant for
use with INDSCAL occurs as Corollary 5 in (de Leeuw & Pruzansky, 1978). I explain Theorem
4a from (Kruskal, 1977) here and discuss how it applies to practical computational solutions from
PARAFAC. Harshman hopes to apply these results to PARAFAC-2, and they might be applica-
ble to other models as well. Earlier uniqueness results were achieved by Jennrich (unpublished)
as recounted by Harshman in Section V, pp. 61-62 from (Harshman, 1970), Harshman (1972),
Carroll (unpublished), and Kruskal (1976).

Some new terminology is needed. Suppose X has a triadic decomposition

R
X=Y a®bQc, ©6).

r=1

Let a, b, ¢ be the matrices whose values are a;,, bj,, C. Define a trio with R columns or factors
to be a triple of matrices, like (g, b, ¢ ), each of which has R columns. The matrices are referred
to individually as the loading matrices of the trio for modes 1, 2, and 3. Thus a triadic decompo-
sition of rank R is effectively the same thing as a trio with R columns. The two phrases are just
different descriptions of the same thing, and are used here interchangeably. The r-th triad of the
decomposition is the outer product of the r-th columns of the three loading matrices.

Suppose the matrices in trio (g, b, ¢ ) have sizes I XR, J xR, and K XR. Define the triple
product [a, b, c] of the trio to be the 3-array of size I xJ xK whose ijk element is Zrai,bj,c,,.

Then a trio is a triadic decomposition of X if and only if X is the triple product of the trio.

Equivalence of trios is defined implicitly through the meaning of trios as triadic decompo-
sitions, but it is helpful to see the meaning of equivalence directly in trio form. Permutation or
relabeling of factors means multiplying the three loading matrices by a fixed permutation matrix
p: if p is a permutation matrix, then [ap, bp, cp 1=[a, b, c]. Insertion of multipliers that cancel
each other means multiplying the three loading matrices by diagonal matrices o, f, Y whose pro-
duct is the identity matrix: if ofy= the identity matrix, then [ac, bB, cy]=[a,b,c]. Two trios
(a,b,c) and (a, b, ¢) are equivalent if and only if they have the same number of columns and
a=apa, b=bpP, c=cpy, for p, a, B, v, having the properties just mentioned. Theorems 4i, 4a,
4b, 4c, and 4d from (Kruskal, 1977) all yield rotational uniqueness as their conclusion. It is also
possible to prove rotational uniqueness for one loading matrix without necessarily proving it for
the whole decomposition. Two matrices a and a of the same size are called rotationally
equivalent if a=apo for some permutation matrix p and some nonsingular diagonal matrix o.
Theorems 3a, 3b, 3c, and 3d all yield rotational equivalence for a single loading matrix as their
chief conclusion.

Suppose a matrix a has column rank k. Then a has some set of k independent columns.
However, some other set of k columns might not be independent. Consider the property that
every set of k columns is independent. Call this property universal k-column independence.
Universal k-column independence implies. rank(a) 2k, but is much stronger. Every matrix a is
universally O-column independent. If @ has no 0 columns, then a is also universally 1-column
independent. If there are no O-columns and if no pair of columns is proportional to each other,
then a is universally 2-independent. Every matrix @ has a largest integer Iy for which it is
universally /,-independent. Harshman and Lundy (1984, p. 162) introduced the term k-rank for
this value, since it is a rank-like number.
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Theorem 4a. Assumption 1: {a, b,c]=1[a, b,c 1.
Assumption 2: The two trios have the same number of columns.

Let R be the number of columns in the two trios. Let 7y, J;, K; be the k-ranks of
a b, c

Assumption 3: [1+J; +K | 22R+2.

Conclusion: (a, b, ¢) and (4, b, C ) are equivalent.
In practice, it is the corollary below that is most useful.

Corollary 4a: Suppose a trio (a, b, ¢) has R columns. Let Iy, Jy, K; be the k-ranks of
a, b, c Il +J;+K;22R+2, then (a, b, c) is rotationally unique.

The conditions of this theorem turn out to be met in almost all practical direct applications
of PARAFAC, with the exception of the case when R =1, which is filled by Lemma 4i above (or
by Theorem 4i from Kruskal, 1977).

Theorem 4a is slightly misstated in (Kruskal, 1977), because the letters Iy, Jo, K¢ are
unfortunately used instead of I, J;, Ky, and the context gives an additional meaning to Iy, Jg,
K. Thus the theorem appears to assume additional information about I, etc., but this additional
information is not needed for the result. Theorem 4i is also slightly misstated in that paper, in
that the hypothesis stated there is weaker than the hypothesis stated here for Lemma 4i and is
inadequate; the hypothesis there is merely that the array is non-zero.

Theorem 4a does not state that its upper bound for R is sharp, i.e., it does not state that
solutions fail to be unique if R is larger than the largest value allowed by Theorem 4a. However,
a substantial amount of (unpublished) computational experience with synthetic data sets by
Harshman and Lundy strongly suggests the following:

Conjecture 4a: If the rank of a decomposition is too large to be guaranteed unique by
Theorem 4a or by Lemma 4i, then the decomposition is not unique.

7. ROTATIONAL UNIQUENESS: ERROR-FREE DATA

Now we show how Theorem 4a and Lemma 4i can be applied to PARAFAC solutions.
PARAFAC consists of two steps:

(i) preprocessing the data 3-array X to yield a new 3-array which is called Y;
(ii) finding the trio (a, b, ¢ ) which yields the least-squares fit to Y=Y =[a, b,c].
Only the second step is of concern here, so the data arrays are referred to as Y.

In discussing the relevance of the two results to PARAFAC solutions, we start with an
unusual example from (Harshman, 1970), where there is a test of PARAFAC with simulated data.
This example is unusual because it contains more factors than the size of the array in any direc-
tion. Harshman generated a trio (a, b, ¢ ) of 8x 10 loading matrices using random numbers, and
took their triple product to form an 8x8x8 data set Y which contains 10 factors. No random
errors were added to Y. He applied PARAFAC and obtained a decomposition (a,b;c)
equivalent except for roundoff error to (&, b,C). The fitted array Y agreed with Y to within
roundoff error. To apply the theorem, note that by const.uction each of 8x 10 matrices a, b, ¢
has both rank and k-rank equal to min(8,10) = 8. Then Theorem 4a yields that (g, b, ¢ ) is rota-
tionally unique if 8 +8+82=2R +2, i.e,, if R <11. Thus Harshman’s use of R =10 falls within the
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theorem. In view of Conjecture 4a, it is fortunate that Harshman did not start with matrices that
were 8x 12 instead of 8 x10! - Of course, Harshman’s work was done years before Theorem 4a
was discovered.

In the same paper, and in subsequent unpublished work with Lundy, Harshman has used
simulated data with and without error in a more systematic way to study rotational uniqueness.
We present here an overview of the empirical results obtained for error-free data.. In these stu-
dies, error-free I xJ XK data Y are always generated by filling an R-column trio (@, b, ¢) with
random numbers, where R < min(/, J,K), and taking the triple product Y as the data.
PARAFAC is always used to obtain several S-factor solutions Y =Y =[a, b, c]. The results fall
into three different cases.

Case (i): Solutions with S =R factors.

In this case Y is almost always equal to Y, and almost all solution trios (a, b, ¢) are equivalent to
the generating trio (a, b, c) and hence to each other. Failure of ¥ = Y can occur due to a local
minimum solution, and in this case (a, b, c) is of course not equivalent to (a, b, ¢). No other
failures of equivalence are observed.

Case (ii): Solutions with S=R +1 factors,

In this case Y is almost always equal to Y, and the solution trios (a, b, ¢ ) are never equivalent to
each other. Local minimum solutions can occur here also.

Case (iii): Solutions with S <R factors._

In this case it is never true that Y =Y. For most data sets Y, all solution trios (a, b, ¢) yield
approximately equal values of ¥, and these solution trios are approximately equivalent. Some-
times there are two (or occasionally even more) different values of Y. The Y corresponding to
the smallest sum of squared residual errors is in all likclihood the global minimum solution,
while the others are merely local minimum solutions. When such local minima occur, solution
trios (a, b, ¢ ) yielding approximately equal values of Y are approximately equivalent, but solution
trios yielding different values of Y cannot be equivalent of course.

In case (iii), the solution trios (a, b, ¢ ) are frequently equivalent to subtrios of (a, b,¢),
and the factors of (a, b, ¢) which appear in (a, b, ¢) are those which contribute the greatest vari-
ance to the triple product. When (a, b, ¢ ) is not equivalent to a subtrio of (a, b, ), it is gen-
erally the case that one factor from (a, b, ¢ ) appears to be a compromise or combination in some
sense between two factors of (a, b, c), and that all the other factors from (a, b, c) agree with
factors from (4, b, ¢).

How do these results match the theorem? First consider Case (i), solutions having R fac-
tors. In all the investigations under discussion at this point, the loading matrices @, b, ¢ used to
create the data have at least as many rows as columns (i.e.. I 2R, etc.). Then the method of con-
struction guarantees that both the rank and the k-rank of a, b, ¢ are all R because, e.g., min(/, R)
= R. The numerical condition of Corollary 4a now becomss R+R+R 22R +2, i.e., R22. Thus
by Corollary 4a if R 22, or by Lemma 4i if R =1, the tric (@, b, ) is rotationally unique, so all
decompositions of ¥ must be equivalent to it and hence to each other, as observed.

Next consider Case (ii), solutions having R +1 factors. The following will be proved:

Assertion: No rank R+1 decomposmon (a,b,c) of Y can satisfy the conditions of Corollary 4a
or of Lemma 4i. -

Thus from Conjecture 4a, such a decomposition would not be expected to be unique, in accor-
dance with the Case (ii) results stated above. By the way, the chief evidence for Conjecture 4a is
just the nonuniqueness observed in Case (ii) situations. To prove the assertion above, define a
new trio (a, b, ¢) of rank R+1 which consists of the triads of ( a,b ¢ ) together with ‘the zero
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triad. (The zero triad means the outer product of three zero vectors). Obviously [a, b, ¢ ]1=Y.
This trio does not satisfy the conditions of Corollary 4a because the k-ranks of a, b, ¢ are all 0,
and the trio obviously does not satisfy the conditions of Lemma 4i. Now suppose some other
rank R +1 decomposition (a,b,c) of Y satisfies the conditions of Corollary 4a or Lemma 4i.
Then it would be unique, and so it would have to be equivalent to (a, b,c). But it is easy to
check that if two trios are equivalent, then their loading matrices have the same k-ranks. Thus
either both trios satisfy the conditions of Corollary 4a or neither satisfies the conditions of Corol-
lary 4a, and likewise for Lemma 4i. Thus if (g, b, ¢) satisfied the conditions of either Corollary
4a or Lemma 4i, then it would not satisfy those conditions. This contradiction proves the asser-
tion.

Harshman (1970) noted a phenomenon of “partial uniqueness” in a Case (ii) example in
which R =4. Though the 5-factor decompositions were not unique, and having 5 factors could
not be equivalent to the 4-factor generating trio (@, b, ¢ ), he observed that each 5-factor solution
trio shared two factors with (a, b, ¢ ). Different solutions shared different factors. Recent com-
putational experiments by Kruskal, carried out after the Multiway ’88 meeting, have greatly
clarified and partially explained this phenomenon, but there is not enough space to include this
material here.

Last consider Case (iii), solutions with S <R factors for some fixed S. In Cases (i) and
(i), Y =Y always holds, so the trio decomposing Y is also a decomposition of ¥. Here however
Y #Y, and it is important to remember that the trio decomposes Y. As in Case (i), Corollary 4a
or Lemma 4i can be applied to show that each decomposition is rotationally unique, so that trios
corresponding to approximately equal Y values should be approximately equivalent, as the Case
(iii) results show they are.

8. DIMENSIONALITY VECTOR OF A MATRIX

Here is another generalization of row rank and column rank of a matrix. It is a far
simpler concept than that introduced above, but useful nevertheless. Let dim, be the dimen-
sionality of the space generated by all slabs of X in direction v. Then the dimensionality vector
of X is the N-tuple (dim,, - - - ,dimy).

Before continuing, note that there is another useful characterization of dim, based on
fibers of X in direction v. The fibers of X in direction v are all vectors which can be formed by
letting the v-th subscript of X vary and fixing all the other subscripts. Fibers are complementary
in concept, and orthogonal in the array, to the corresponding slabs. Then a legitimate alternative
definition of dim, is the dimensionality of the space generated by the fibers of X in direction v.
To see why this second definition agrees with the first one, consider a matrix ¥ whose rows are
all the fibers in direction v of X. Then each column of Y consists of the elements of a slab in
direction v. One definition of dim, is the row rank of Y and the other definition is the column
rank of Y.

The dimensionality vector of the zero N-array is (0, ... , 0). The dimensionality vector of
a non-zero vector is always the 1-tuple (1), and the dimensionality vector of a matrix is the pair
(row rank, column rank), and hence equal to (R,R) where R is the ordinary rank of the matrix.
The 3-arrays shown earlier with ranks 0, 1, 2, 3 have dimensionality vectors respectively (0,0,0),
(1,1,1), (2,2,2), and (2,2,2). Unlike rank, as discussed in the last paragraph of Section 2, the
dimensionality vector does depend on the formal order of an array. Recall the three armrays X, ¥,
and Z discussed there. If the dimensionality vector of X is say, (Ig,Jg ), then the dimensionality
vectors of Y and Z are (1,1¢y,J¢), and (1, 1,1¢,J9).
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What triples of numbers (R, S, T) can serve as the dimensionality vectors of 3-arrays? It
is not hard to prove that dimensionality vector (R, S, T ) satisfies the inequalities R <ST, S <TR,
T <RS. Furthermore, a triple (R, S, T) is the dimensionality vector of some array if and only if
it satisfies these inequalities. Let us get some concrete idea of what triples are possible, writing
them always with R <S <T for simplicity. If R=0, then S =T =0, so the triple is (0,0,0) and the
corresponding array is the zero array. If R=1, then S=T, so the triples are (1,1,1), (1,2,2),
(1,3,3), etc. If R=2, then SST<2S, so the possible triples are (2,2,2), ... , (2,2,4), (2,3,3), ...,
(2,3,6), etc.

What relationships are there between rank and dimensionality vector for 3-arrays? Here
are two weak inequalities, where the dimensionality vector of X is (R, S, T ):

max(R, S, T ) <rank(X) <min(RS, RT, ST) . ()

Applying results mentioned above in Section 3, if dimensionality vector is (3,3,3), then rank <5,
and if dimensionality vector is (2,5,T), then the theorem of Ja’ Ja’ gives a sharp upper bound on
rank. It is not hard to construct a 3-array with dimensionality vector (3,4,5) and rank 6, and it
can be proved that there is no smaller way to achieve all 4 values distinct.

9. CONNECTIONS WITH DATA ANALYSIS MODELS

Rank relates strongly to the PARAFAC and the CANDECOMP methods. (These two
very similar methods were independently invented, but both rest on the same model for 3-way
arrays.) Perhaps it may relate also to other methods. If X is a 3-array of data, then rank(X) is
the smallest number of factors or dimensions with which PARAFAC and CANDECOMP can fit
the data exactly. Each triad in the decomposition is one factor or dimension of the PARAFAC or
CANDECOMP solution. The original references to PARAFAC and CANDECOMP are (Carroll

& Chang, 1970) and (Harshman, 1970) respectively, though much has been written about them
since.

Information about maximum possible ranks of array s, regrettably still fragmentary, can be
helpful to data analysts when interpreting the graph of rank versus dimensionality in order to
decide how many dimensions to use.

The dimensionality vector relates strongly to 3-mode factor analysis (3-MFA), and may
Perhaps relate also other methods. If X is a 3-array of data, then the dimensionality vector of X
is the size of the smallest core G for which 3-MFA can fit X exactly. Some basic initial refer-

ences to 3-MFA are (Tucker, 1963), (Tucker, 1964), (Tucker, 1966), though a great deal has been
written about it since.

It is helpful to understand the relationship between decomposing a matrix into dyads and a
3-array into triads as explained in this paper. The corresponding strong parallelism between fac-
tor analysis and PARAFAC makes the process of interpreting their results quite similar, with one
exception. Direct PARAFAC solutions of real data are u. nally rotationally unique, while factor
analysis solutions are not, and this difference substantizlly modifies the similarity. In other
words, factor analysis solutions face the rotation problem. while PARAFAC solutions generally
do not. The rotational uniqueness of PARAFAC-CANDE."OMP solutions is seen by many peo-
ple as a major advantage.

The rotational uniqueness property of PARAFAC i:: seen to be not merely the uniqueness
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of a particular model but rather to reflect the uniqueness of a fundamental decomposition (of 3-
arrays into triads). This uniqueness, which was first expected intuitively and then demonstrated
empirically, has now been fully justified mathematically and is much better understood. The
number of dimensions up to which rotational uniqueness may be expected to hold has been deter-
mined and explained mathematically, and found to agree with the results of Monte Carlo compu-
tations. The k-rank conditions of Theorem 4 clarify the limitations in another direction on when
rotational uniqueness may be expected to hold. The theorem on rotational uniqueness is aiding
an investigation by Harshman and Lundy into models involving linearly dependent dimensions,
by clearly showing that they can exist, and giving some of the conditions for this to happen.

Some unusual behavior of PARAFAC, namely, two-factor degeneracies, is now under-
stood, and by analogy other degeneracies are partly understood.
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