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Richard A. Harshman* 
 

0.  Abstract 
 

The mathematical model of PARAFAC is reviewed, and an examination is made of its 
application to cross-product matrices (e.g. covariance matrices,. scalar product matrices, etc.). It is 
shown that PARAFAC1 can correctly describe both orthogonal (uncorrelated) and oblique 
(correlated) factors in system-variation data matrices, but that it can only correctly describe 
orthogonal factors when applied to the cross-product matrices computed from that data. 

A similar examination is made of the INDSCAL-PARAFACl model for three-mode 
multidimensional scaling. It is shown that this model is restricted to descriptions of stimuli 
relationships in terms of orthogonal perceptual dimensions, (whereas traditional two-mode 
multidimensional scaling has no such restriction). 

A three-mode model is developed to deal specifically with sets of cross-product matrices. 
This model, called PARAFAC2, can describe cross-product matrices in terms of orthogonal or 
oblique factors, whichever best fits the data. Yet it retains PARAFAC1's highly desirable 
characteristics of providing unique "explanatory" solutions. Along with factor loadings on variables, 
it provides factor correlations, and loadings for each occasion of measurement. For 
multidimensional scaling, PARAFAC2 will recover the projections of the stimuli on oblique (or 
orthogonal) dimensions, give the angles between these dimensions, and provide a set of dimension 
weights for each person. 

The derivation and interpretation of the PARAFAC2 model is discussed, and a precise 
definition is given of the type of uniqueness which it provides. No formal proof of this uniqueness 
has as yet been discovered, but the uniqueness has been demonstrated empirically by computer 
analysis of synthetic data. 

An additional important advantage of PARAFAC2 for factor analytic applications is its 
greater generality: it is not restricted to analysis of system-variation data. This is shown by re-
deriving the PARAFAC2 description of cross-products without invoking the restricted system-
variation model for data from which the cross-products are computed. Instead, a more general 
model of the data is used. This model applies to almost all three mode cases which might be 
approached factor-analytically. System-variation is one special case of this more general model. 

Current work on algorithms for fitting the PARAFAC2 model to data is reviewed. A 
"hybrid" approach is under development which combines general optimization techniques with 
estimation procedures based on the mathematical 

                                                           
* The author wishes to express his indebtedness to Robert Jennrich, Joseph Kruskal, and Dale Terbeek, for 
the important part that they played in developing the ideas underlying PARAFAC2. 
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properties of the PARAFAC2 model. 

A method for circumventing the "communalities" problem is proposed. It consists of a 
technique for ignoring the diagonal values of the cross-product matrices and estimating the 
parameters of PARAFAC2 by optimizing the least square fit to the off-diagonal elements. 
The differences between analysis of covariance and correlation matrices is made explicit by 
developing the appropriate modifications of the PARAFAC2 model which would be necessary to 
analyze correlations. 

PARAFAC2 is compared with more general models which lack unique solutions, but which 
allow different correlations between a given pair of factors from one cross-product matrix to the 
next. The possible use of a routine such as Carroll's IDIOSCAL program in conjunction with 
PARAFAC2 is discussed. 

 
 

1. The factor model of PARAFAC1 (PARAFAC) 
Conventional factor analysis describes a two-way set of data in terms of a small number of 

underlying factors. Let us think of this two-way set of data as a set of values for m persons on n 
tests, xjk is the value for the jth test on the kth person. Factor analysis writes 
 
(la)  xjk = ajlblk + aj2b2k + ... + aj1blk + Ejk 
 

where ajl is the loading of the first factor on test j and blk is the loading of the first factor on person 
k, and such products are formed for the l factors presumed to underlie the data. Ejk is an error term, 
which is necessary as the model should not be expected to fit real data exactly. (Ejk is often written 
Ujk and called "uniqueness" term. It is thought of as consisting of components unique to that person 
and that test, plus error.) 

Let us neglect error terms until we consider estimation procedures.  Using summation 
notation, we can write 

1
(1b) x a b .

l

jk jr rk
r=

= ∑  

 
In matrix notation, we can consider A, an n by l matrix giving the loadings of n tests on l 

factors; and B an m by l matrix giving the loadings of m persons on l factors. We can then write the 
classical factor model (neglecting error) as 
 

(lc)   X = AB' 
 

where X is an n by m matrix of values for n tests obtained by m persons. 
The PARAFAC (hereafter called PARAFACl) generalization of this model (Harshman, 

1970) can be expressed by considering a number of two-way data matrices simultaneously (thus 
obtaining a three-way data set). The values for the factor loadings of the tests (or alternatively, the 
persons, it does not matter which) are altered from one occasion to the next by a proportional 
change as follows: 
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( ) ( ) ( ) ( )
1 1 1 2 2 2(1d) x a c b a c b a c bi i i i

jk j k j k jl l lk= + + +K  

 

where ( )x i
jk  represents the ith two-way matrix xjk. We will here consider it the matrix for the ith 

"occasion", just as we considered xjk to be values for "tests" obtained by "persons", although all 
these names are only for convenience in visualizing a particular application of the model. 

In summation notation we can write 
 

( ) ( )

1
(1e) x a c b

l
i i
jk jr r rk

r=
= ∑  

and in matrix notation this becomes 
 

(1f)   Xi = ADiB′ 
 
where Xi is the two-way matrix xjk for the ith occasion, A and B are the matrices of factor loadings 
for tests and persons, as before, and Di is an l by l diagonal matrix, whose diagonal cells give 
proportional changes in the loadings for the factors on the ith occasion.*  

In this model of data, there are no restrictions on the patterns of loadings which occur in A 
and B.  In particular, no assumptions are made that the columns of A or B are orthogonal to one 
another. 

If there are a sufficient number of different Xi in a given set of data matrices, the 
decomposition described by (lf) is unique for a small enough number of factors (l), except for trivial 
differences which do not affect interpretation. Conditions of data adequacy and of uniqueness of the 
extracted factors, have been described in Harshman, 1970 (pp. 20-23, 35-44, 61-62). 

Because of this uniqueness, and the minimal assumptions under which it is obtained, an 
argument can be made that factors extracted in this way from "system-variation" data (Harshman 
1970, pp. 20-23) have a greater likelihood of explanatory validity than those selected by traditional 
factor analysis using some rotation principle such as Varimax or simple structure. (For the 
argument, see Harshman 1970, pp. 1-26.) 

 
2. Representation of summed-cross-product matrices 

Now let us consider the problem of representing, in terms of the factors of X, values derived 
from X by taking sums of cross-products. If the means of the columns of X are zero, the summed-
cross-products for two variables will be proportional to their covariances. If, in addition, the 
variances of the columns of X are unity, then the cross-products for two variables will be equal to 
the correlation coefficient for those two variables. 

For tests j and j', the covariance across the m persons is 
 

=1
(2a)

1c x x . (if x = x 0)
m

j j jk j k j j
km′ ′ ′= =∑  

                                                           
* In other words, if ( )d i

rs  is an entry of Di, then ( )d i
rs =0 if r≠s, and ( ) ( )d ci i

rs r= if r=s where ( )c i
r is used as in 

equation (1e). 
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This is simply 1/m times our general summed-cross-product. The full matrix of summed-cross-
products C, can be represented in matrix notation by 
(2b)  C = XX'  . 
To represent these summed-cross-products (e. g,. unscaled covariances) in terms of factors, rather 
than data values, we can substitute our theoretical factor model of the data matrix (from equation 
(lf)) into our description of the summed-cross-products (2b). This will give us, for the cross-product 
matrix derived from the ith data matrix 
(2c)  Ci =  (ADiB')(ADiB')'   . 
 
Since the transpose of (ADiB') is the transpose of the components taken in reverse order we can 
rewrite (ADiB')' = B ' ' Di'A'. Further, since B ' ' = B and Di' = Di (since Di is diagonal), we 
can rewrite (2c) as 
 
(2d)  Ci = (ADiB')(BDiA') 
 
regrouping gives 
 
(2e)  Ci = ADi(B'B)DiA' 
 
or, combining terms 
 
(2f)  Ci = ADiWDiA'  (where W = B'B). 
 
This describes our ith summed-cross-product or covariance matrix in terms of A, our n by l matrix 
of loadings of the n tests on the l factors; Di, our diagonal matrix giving the weights of the l factors 
on the ith occasion, and W an l by l matrix related to the factor cross-products. If the columns of B 
have zero means, then (1/l)W is the matrix of covariances of the factors. If the cells of W are scaled 
so that the diagonals are equal to one*, then wrs, a cell of W after appropriate scaling, gives the 
correlation between factor r and factor s. This is interpretable geometrically as the cosine of the 
angle between factor r and s in the space spanned by the factors. 

In summation notation, this model (2f) is written 
 

( ) ( ) ( )

1 1
(2g) c a d w d a .

l l
i i i
jk jr rr rs ss ks

s r= =
= ∑ ∑  

 

3. Orthogonal factors 
Now if the factors are uncorrelated with one another in their pattern of loadings across 

people, i.e. if the columns of B are uncorrelated (have average cross-products of zero) then 
(3a) W = B'B = ∆ 
                                                           
*(i.e. wrs is divided by (w )(w )rr ss , and the inverse scaling is made on all the D matrices to compensate) 
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where ∆ is some diagonal matrix. This gives zero cosines for the angles between different factors, 
and thus the factors are said to be orthogonal. Now in this case, the summed cross-products can be 
represented 
(3b)  Ci = ADi∆DiA'   . 
This can be rewritten 
(3c) C AD Ai i ′= %  

where di
r
% , the rth diagonal element of Di

% , is equal to 2(d ) (k )i
r r , where kr is the rth diagonal 

element of ∆, and relates to the "size" of factor r (i.e. the sum of the squared loadings of factor r in 
B). If the mean loading for factor r were zero, kr would be proportional to the variance of factor r in 
B.  

Suppose we took a set of summed-cross-product or covariance* matrices Ci and analyzed 
them by the PARAFAC1 procedure. Then we would be decomposing them according to the model 
of (lf), namely 

* * *
(3d) C AD B .i i ′=  
Now this would yield a perfect fit and a "unique" solution (see Harshman 1970), when 

(i) model (lf), or the more general model of section 7, is appropriate for the data from which 
the Ci were computed; 
(ii) we had guessed the number of factors correctly (guessed the correct value for l); 
(iii) B'B = ∆, that is, the factors were uncorrelated or "orthogonal" across B in the original 
data from which the cross-products were computed. 

Further, we would discover the 
*
B  was proportional to 

*
A . Thus the solution could be represented 

(by choosing the right 
*

Di ) as 
* * *

(3e) C AD A .i i ′=  
By comparing the PARAFACl solution in this form with our equation (3c), we can interpret 

it as follows. 
*
A  would equal A, the matrix of loadings of the tests on factors which underlie the 

original data from which the covariances were computed. 
*
Di  would equal (Di)2∆, the squares of 

the weights of the factors for the ith occasion, multiplied by coefficients proportional to the "size" 
of the factors in B. We note that Di should therefore have all elements greater than or equal to zero. 

If PARAFAC gave a negative value in 
*
Di  it would indicate a failure of the data to correspond to 

the model. 
4. Generalized model for oblique factors 

We have seen that PARAFAC1 provides an adequate model for analysis of covariance or 
other summed-cross-product matrices only when the factors are orthogonal in the data. This restricts 
the application of the model, since 
                                                           
* Covariance matrices can be analyzed by PARAFAC2 only if the means of the variables do not change 
appreciably from one Ci matrix to the next. If they do, cross products or average cross products must be 
used. 
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it is not usually possible to know whether or not this would be the case for any given set of 
covariance matrices. 

Therefore, we adopt the more general expression derived in (2f) as a general model for 
three-mode factor analysis of matrices composed of summed-cross-products: 

 
(4a)  Ci = ADiWDiA' 
 
We shall call this model PARAFAC2. This model describes a set of Ci cross-product matrices in 
terms of a common set of factors A, and a common set of angles between the factors, W. The 
occasions differ only in the weights given the factors, described for the ith occasion (the ith matrix 
of summed-cross-products) by Di. 
 
5. Derivation of PARAFAC2 for scalar product matrices derived from distance matrices 

In multidimensional scaling, and in particular in the Carroll and Chang three-mode model 
(Carroll and Chang 1970) we start with a set of matrices giving the distances between stimuli. These 
are then converted to the scalar products of vectors by application of a trigonometric relationship 
which holds for oblique or orthogonal coordinates (see Torgerson 1958, pp. 255, 258). The resulting 
scalar products represent something similar to covariances between the stimuli. Each scalar product 
gives the "common strength" of two stimuli by multiplying the length of the first stimulus vector 
from some origin by the size of the projection of the second stimulus vector upon the first. 

Now scalar products can also be represented by the sum of products of the projections of the 
two stimuli onto a set of orthogonal axes as follows: Let A be an n by l matrix of projections of n 
stimuli onto l orthogonal axes, then 

 
(5a)  S = AA'  , 
 
where S is an n by n matrix of scalar products of the stimulus vectors. 

Now Carroll and Chang generalized this model to a set of parallel scalar product matrices 
for the same n stimuli, allowing individual axes to be expanded or contracted in each set (Carroll 
and Chang 1970, pp. 284-5).  This gives 

 
(5b)  Si = (ADi)(ADi)' 
 
which can be rewritten 
 
(5c)  Si = ADi

2A' . 
 
This is obviously closely related to our model (3e) for summed-cross-products with orthogonal 
factors. Now the scalar products as derived from the distances between stimuli can only be 
represented by Si = ADi

2A' when the axes onto which the stimuli are projected are orthogonal. 
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             The problem with oblique axes does not arise in traditional two-mode multidimensional 
scaling. Since the orthogonal axes extracted by two-mode scaling are arbitrary, they can always be 
rotated, without loss of fit, into a "true" oblique position. But the INDSCAL � PARAFAC1 unique 
three-mode solution will be the best fitting pair of orthogonal axes "common to all persons." If the 
true axes are oblique, experiments with synthetic data show that two different distortions will occur. 
Not only will the orientations of the INDSCAL � PARAFAC1 axes be incorrect, but the recovered 
stimulus configuration will be distorted as well. (But it is interesting to note that the distorted 
stimulus configuration with the orthogonal axes will predict the data almost as well as the correct 
configuration with oblique axes.) 

Let us derive a model for three-mode multidimensional scaling which allows oblique, as 
well as orthogonal axes. We can express the scalar products in terms of oblique axis projections of 
the stimuli as follows. 

 
Let A be an n by l matrix giving the projections of n stimuli onto a set of l oblique (or 
orthogonal) axes, the "underlying perceptual dimensions". 
Let Di be a diagonal l by l matrix giving the expansions or contractions of the axes of A for 
the ith person. 
Let T be an l by l matrix describing the projections of the axes of A onto a set of orthogonal 
axes (so that AT describes the projections of the stimuli onto a set of orthogonal axes). 
Then: 
 

(5d)  Si = (ADiT)(ADiT)' 
 
(5e)  Si = (ADiT)(T'DiA'). 
 
(5f)  Si = ADi(TT')DiA' 
 
(5g)  Si = ADiWDiA'  . 
 

Thus we get the same model as developed earlier for summed-cross-products, with the same 
interpretation for all the constituent matrices. 

A gives the stimulus projections, Di the relative scale or importance of the dimensions for 
the ith person, and W the angles between the dimensions. 

 
6.  Uniqueness of PARAFAC2 Solutions 

No proof of the uniqueness or of the conditions for non-uniqueness has yet been discovered 
for PARAFAC2. Nonetheless, computer experiments with PARAFAC2 and synthetic data have 
established empirically that it will give unique solutions, if the number of factors extracted is not 
greater than the number "actually in the data" (used to create the synthetic data), and if there are a 
sufficient number of independent Ci matrices. When too many factors are extracted however, the 
solution is not unique. The behavior of the 
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model and the conditions of uniqueness seem to be similar to those of PARAFAC1, which are 
described in detail in Harshman (1970). 

The term "unique" needs some clarification. There is a trivial non-uniqueness of scale for 
PARAFAC2, in that all the loadings on a given factor can be doubled or otherwise changed in scale, 
as long as a compensatory inverse scaling is performed on all the person weights for that factor (or, 
on the W matrix). Such changes do not affect the pattern of loadings across measures or across 
persons, and since this pattern is what is interpreted, such changes do not alter the interpretation that 
would be given to a particular factor. The columnar order of the factors is also arbitrary. Factor I on 
a given analysis may come out as factor III on a different analysis, but the same total set of factors 
will be found to be present in both cases. 

Mathematically, these two trivial types of indeterminacy can be expressed by the following 
equalities. Let S be an l by l diagonal matrix changing the scale of a set of l factors. Let S be 
another such diagonal scale-changing matrix. Let P be an l by l permutation matrix changing the 
order of the l factors. We can see that if 

 
(6a)  Ci = ADiWDiA' 
 
then we can insert l by l identity matrices into this equation without altering it, as follows 
 
(6b)  Ci = A(I)Di(I)W(I)Di(I)A' 

now since (SS-1)=I, and 
**
-1S S I  = 

 
, we can substitute 

( ) ( )
* ** *

1 1 -1 1(6c) C A SS D SS W S S D S S A .i i i
− − −    ′=    

   
 

In a similar fashion, since (PP-1)=(I), we can write 
 
(6d)  Ci = A(PP-1)Di(PP-1)W(PP-1)Di(PP-1)A' 
 
combining these substitutions, we can write 

( ) ( )
* ** *

1 1 -1 1 -1 1 1 1(6e) C A P SS P D P SS P W P S S P D P S S P A .i i i
− − − − − −       ′   =                

 

By regrouping parentheses we can display the indeterminacies of both scale and permutation that 
the A, D and W matrices are subject to, and the compensatory inverse transformations that are 
necessary to preserve the equality: 

( ) ( )
* ** *

1 1 1 1 1 1 1 1(6f ) C APS S P D PS S P WPS SP D PS SP Ai i i
− − − − − − − −     ′=         

 

However, there are other special indeterminacies of the signs in the Di matrices which aren't 
as obvious. These indeterminacies can be expressed by the following rule: 

 
(Rule 6a) The sign of a single person's loading on any given factor can be reversed, provided that 

his signs 



 38 

are also reversed for loadings on all factors that are oblique to (i.e. have a non-zero cross-
product with) the given factor.  

 
This rule can be understood by examining equation 2g. The individual person loadings are always 
taken two at a time. If , whenever a sign is reversed for one element of such a pair of drr, dss, it is 
also reversed for the other, then the value of the product is not changed. Now if two factors are 
orthogonal to one another, then the wrs value for that pair is zero, and those products in which that 
pair of drr , dss values would have occurred will all vanish. Therefore reversal of the sign of drr to 
compensate for a reversal of dss, (or vice versa) is not necessary when factors r and s are 
orthogonal. A consequence of these rules is that for an orthogonal solution, the signs of all the "d" 
values are arbitrary. Only the squares of these values would enter into the solution. 
 

In many applications of PARAFAC2, it seems reasonable to put certain constraints on the 
Di matrices. It seems reasonable in multidimensional scaling, for example, to demand that all 
elements of Di , (i.e. all the person weights for the dimensions), be non-negative. This can be 
interpreted as requiring that all persons see a given dimension. as going in the same direction 
through the space. It prohibits a description in which a given individual uses a dimension as if it is 
"reversed in direction" compared to the way others use it. An option for constraining the elements 
of the Di to non-negative values has been implemented in the current PARAFAC2 computer 
program. 

 
7. Analysis of Non-System-Variation Data with PARAFAC2 

Only certain types of three-mode data are analyzable with PARAFAC1.  The data model 
underlying PARAFAC1 requires certain strict correspondences between the data matrices from one 
occasion to the next. First, it requires that the data consist of measurements of the same objects (or 
persons) on the same variables, on every occasion. Second, it requires that the patterns of variation 
of the factor influences from one occasion to the next must have a special, restricted form. 
Specifically, it requires that the changes in one person's loadings on any given factor be 
proportional to the changes in every other person's loadings on that factor. (See equation ld or lf. 
For a more detailed discussion of system-variation, and other types of data variation, see Harshman, 
1970, pp. 18-26.) The requirement of system-variation data places a substantial undesirable 
restriction on the areas of application of the original PARAFAC1 model. It is therefore of great 
practical, as well as theoretical significance to note that PARAFAC2 is not restricted to analysis of 
system-variation data. It is possible to derive the same PARAFAC2 model for cross-products, using 
a much more general model for data than was used in section 2. 

 
Let us consider the case where we have no particular correspondence between the columns 

of our data matrices from one occasion to the next. We shall study a set of n common measures, as 
was done in section 2. But instead of repeatedly measuring the same set of persons, we shall 
measure a different set of persons on each occasion. The number of persons will 
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vary from occasion to occasion. On the ith occasion, our data matrix Xi will have the dimensions n 
by mi, where mi is the number of persons measured on that occasion. 

Since the same set of n measures is used on each occasion, we hypothesize that the same set 
of common factors is used by the mi persons to respond to the n measures. Let A represent the n by 
l matrix of factor loadings on measures. Let Bi be an mi by l matrix giving the loadings of the mi 
persons in the ith subpopulation on the l common factors underlying the measures. We can then 
describe our i data matrices as follows 

 
(7a)  Xi = ABi' 

 
Now if the correlations between the factors are caused by some basic relationship between 

the influences which those factors represent, then it will often be reasonable to assume that these 
correlations remain constant from one subpopulation to another, and that only the size of a given 
factor's influence will vary across subpopulations. If Bi and Bj are the factor loading matrices for 
any two of our subpopulations, we can express the consistent "correlations" (cross-products) of the 
factors by writing 

 
(7b)  Bj' Bj = DiBi'BiDi 
 
where Di is a diagonal matrix with the same interpretation as in the system-variation model. It 
describes the changes in "size" of the factors from one occasion to the next. 

Now let us derive a representation of the cross-products derived from data which is 
describable by (7a) and (7b). If Ci is the cross-product matrix derived from Xi, then 

 
(7c)  Ci = (Xi)(Xi)' . 
 
But by substitution of our definition (or model) for Xi given earlier in (7a) we get 
 
(7d)  Ci = (ABi')(ABi')' 
 
By applying the rule that the transpose of a product is the product of the transposes in reverse order, 
we get 
 
(7e)  Ci = (ABi')(Bi''A') = (ABi')(BiA') 
 
or, regrouping terms, 
 
(7f)   Ci = A(Bi'Bi)A' . 
 
Now by applying the second part of our model, (7b), which postulates the same "correlations" 
among the factors in the different subpopulations, but differing sizes as described by the Di 
diagonal matrices, we can write 
 
(7g)  Ci = A(Di(Bj'Bj)Di)A' 
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for some other jth subpopulation. In general if we write 
 
(7h)   W = Bj'Bj 
 
we can then describe the cross-products in terms of the model of 
PARAFAC2, namely 
 
(7i)  Ci = ADiWDiA' 
 
with the same interpretations of the constituent matrices as in the derivation from a system variation 
model, in section 2. 

Two special cases of this general model should be noted. In the first special case, all the Bi 
could be taken from the same people. The size of the Bi matrices would all be the same, but the 
columns of Bi would not necessarily be proportional to the corresponding columns of Bj . This case 
corresponds to the example of personality test "object-variation" type data described elsewhere 
(Harshman, 1970, pp.22-23). 

An even more restricted special case is where Bj = BiDi, the columns of Bi are proportional 
to the columns of Bj for all i, j, under study. This would be a case of system-variation. This reveals 
how the system-variation data model is a special case of the more general PARAFAC2 model. 

 
8. Estimation Algorithms 

Work is currently in progress to find the most efficient way of fitting the PARAFAC2 model 
to a set of data. A detailed report will be forthcoming in a later issue of W.P.P., but a brief glimpse 
of current developments is appropriate here. 

An algorithm for PARAFAC2 has been devised by Robert Jennrich (UCLA Dept. of 
Mathematics) and implemented by the author as a FORTRAN IV program on the IBM 360/91 
computer. The algorithm uses an approach similar to the "quick algorithm" for PARAFAC1. It 
estimates values for one of the three basic sets of parameters (A, Dj or W) while holding the other 
two sets of parameters fixed. A complete iteration consists of first estimating the Di �s, then W, and 
finally A. The program iterates this process until the values converge on a stable least-squares 
solution. 

This procedure generally works, but it is expensive, and sometimes slow to converge. Even 
worse, from certain bad starting positions local optima or extremely slow convergence can be 
encountered. We are accumulating experience, however, which would show how, by putting certain 
constraints on starting positions and values of the parameters, these deadlocks can largely be 
avoided. 

A basic modification to this special algorithm is currently under study. An attempt is being 
made to combine Jennrich's algorithm with a generalized optimization routine called TBU 
(Reichenbach, 1962, 1969). The combined program alternates between two phases: first, it observes 
how the parameters 
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change during an iteration of Jennrich's algorithm. It computes or updates trends for the direction 
and amount of change in each parameter. In the second phase, it moves all the parameters 
simultaneously an optimal (hopefully large) distance in the direction of their respective trends. The 
author has been working with Hans Reichenbach on this approach and has found that it can rapidly 
accelerate the convergence of PARAFAC1 in certain difficult cases. The application of this 
technique to PARAFAC2 is the next step to be implemented. Preliminary results with PARAFAC2 
have been encouraging. 
 
9. Avoiding the "Communalities" Problem 

In deriving our model of the factor structure underlying data and cross-products, we have 
ignored the fact that there would be a certain amount of error or "noise" in the data. For 
PARAFAC1, and its estimation procedure, this approach was justified. We are looking for a least 
squares best estimate of the common-factor loadings, or the A, Di and B values. The process of 
directly optimizing the fit of these parameters to the raw data provides the least square estimates 
that we desire. The problem becomes more complicated, however, when we consider cross-product 
matrices. 

Let us take the following model of "noisy" data: 
 
(9a) X X E AD B Ei i i i i i′= + = +%  
where Ei is a matrix of the same size as Xi, containing random "error terms". (In traditional Ei 
actually represents "unique variance" composed of both "specific" and "error" variance.) Since Xi 
represents all the common-factor part of the data matrix Xi

% , then what remains when we subtract it 
from Xi should be a matrix of uncorrelated random errors. The rows of Ei should be uncorrelated 
both with the rows of  Xi and with each other. The means of these random errors should be zero. 

We can develop a model for the cross-products from such "noisy" data, as follows: 
 

(9b) C X Xi i i′=% % %  
 
By substituting from (9a) into (9b) we get 

( )( )(9c) C X E X Ei i i i i
′= + +%  

( )( )(9d) C X +E X +Ei i i i i′ ′=%  

(9e) C X X E X X E E Ei i i i i i i i i′ ′ ′ ′= + + +%  
 
now, since the rows of  Ei are uncorrelated with the rows of Xi, we can write 
 
(9f ) C X X 0 0 E Ei i i i i′ ′= + + +%  

(9g) C C E Ei i i i′= +%  
Although the rows of Ei are uncorrelated with one another, each row is of course correlated with 
itself. Thus (Ei)(Ei') will yield a diagonal matrix whose diagonal elements represent the sum of the 
squared errors for that 
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row of the data matrix (i.e. a measure of the amount of noise in that variable). This diagonal matrix 
is added to the matrix predicted by the common factors, and therefore increases the size of the 
diagonal elements of the cross-product matrix beyond what would be predicted by the factors. 

An attempt to achieve a least squares best fit for all the values of the covariance matrix, 
including the diagonals, would distort the solution, since the diagonals are larger than would be 
predicted by the factor loading matrices. 

This problem is analogous to the standard "communalities" problem of traditional two-mode 
factor analysis. We solve this problem in the following way. In the algorithm which performs the 
fitting of the model to the data (see section 8 of this article) we perform an extra step at the end 
of each iteration. In this step, we replace the diagonal entries of the cross-product matrices with the 
values for those diagonal entries which are predicted by the model at that iteration. This will cause 
the values in the diagonals to "float" one iteration behind the predictions of the model.  As the 
algorithm proceeds, the difference between these diagonal values (from the last iteration) and the 
models prediction (from this iteration) will soon become very small, and therefore will not influence 
the process of convergence. The diagonal values will, in effect, be ignored and only the off diagonal 
values will be 'fit' by the program. This should provide the best possible least squares estimate of 
the A, Di and W parameter matrices. 

(This same technique for ignoring cells in the data matrices can be used to ignore missing 
values in PARAFAC1 or PARAFAC2.) 
 
10. Analysis of Correlation Matrices 

The technique for analysis of cross-product matrices developed in this article applies 
directly to covariance matrices, as was pointed out in section 2, but it does not apply directly to the 
analysis of correlation matrices. 

In a correlation matrix, the rows and columns of the covariance matrix have been rescaled so 
that the maximum value for any entry is 1.0. This is accomplished by dividing each entry by the 
standard deviation of its column and row variable. In other words, 
 
(10a)  Corrij = Covij /sisj 
 
where si, sj represent the standard deviation of the ith and jth variables respectively. 

In matrix notation, we can represent the relation between the covariance matrix C and the 
correlation matrix R, as follows 

 
(10b)  C = DRD 
 
where D is a diagonal matrix whose ith diagonal element is the standard deviation of the ith 
variable. Therefore 
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(10c)   R = D-1CD-1 
 
and if we substitute our PARAFAC2 model for the covariance into equation (10c) we get 
 

1 1(10d) R D AD WD A D .i i i i i
− −′=  

 
This expression is more complicated than PARAFAC2, and its mathematical properties have 

not been investigated. It serves to demonstrate, however, why correlation matrices cannot be 
directly analyzed by PARAFAC2. It would seem inefficient to derive a further algorithm for this 
model (which may not have the same degree of uniqueness) when one can simply compute 
covariance matrices instead of correlation matrices and analyze them with PARAFAC2. 
 
11. Relation of PARAFAC2 to Jennrich's multidimensional scaling model 

Jennrich has developed a generalization of Carroll and Chang's INDSCAL multidimensional 
scaling model which leads to a decomposition of matrices of summed-cross-products which is even 
less restricted than PARAFAC2. His derivation is based on a generalized Euclidean distance metric, 
and allows each person to use his own metric in judging inter-stimulus distances. His derivation is 
presented in an accompanying article (Jennrich 1972). 

It is possible to reach Jennrich's model by a slightly different path, namely generalizing 
PARAFAC2 so that the correlations among the factors underlying the data can vary from one 
occasion to the next. 

Start with the model of PARAFAC2, namely 
 

(lla)  Ci = ADiWDiA'  . 

Now let each occasion have its factors 
*
A  related to A by some oblique or orthogonal rotation. Let 

Ti be the l by l matrix describing this rotation by giving the projections of the axes of A onto the 

axes of 
*
A . 

If we let 
*
Ai  be the axes which are expanded or contracted on each occasion (or by each 

individual), then 
*

(11b) A ATi i=  
(llc)  Ci = (ATi)DiWDi(Ti'A') 
 
(lld)  Ci = A(TiDiWDiTi')A' 
(lle)  Ci = AWiA' 
 
This model would not give a unique solution since, for example, we can always let A AR i=%  

and 1 1W (R W(R ) )i i i
− −′= . It might be useful, however, to choose Ri such that A%  approaches A of 

PARAFAC2 (2f) as closely as possible. Then the following research strategy might seem 
reasonable. First, analyze with PARAFAC2. Then use Jennrich's model (lle) to analyze the same 
data. If the improvement of fit gained with the more general model is 
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significant enough (by some criterion) to lead the investigator to suspect that there were "real" 
changes in obliqueness across occasions, then rotate the solution of (lle) into maximal agreement 
with (2f) as just described above. The model of (2f) (PARAFAC2) describes the common space, 
and (lle) describes how each occasion (or individual) distorts that common space by rotating the 
axes, in addition to simply expanding or contracting them. 

Carroll (personal communication) has recently pointed out that this (lle) model is 
mathematically equivalent to one which he discusses in conjunction with INDSCAL (Carroll, 
1970). The equivalence is easily missed, because Carroll interprets his model in terms of a common 
set of axes which each person subjects to a different orthogonal rotation in addition to contraction or 
expansion. The interpretation developed above by Jennrich and the author is one of each person 
imposing an oblique transformation on the common axes in addition to his expansion or contraction 
of the different axes. 

Carroll and some others have raised questions about the interpretation of oblique perceptual 
axes. This interesting question will not be treated here. The author believes that interesting and 
plausible interpretations do exist, and notes, more importantly, that PARAFAC2 analysis of real 
perceptual data does in fact sometimes reveal oblique perceptual dimensions. (see Terbeek and 
Harshman, 1972.) 

Carroll is developing a program to analyze data in terms of the more general model of (lle). 
It will be called IDIOSCAL (for IDIOsyncratic SCALing). If we applied to IDIOSCAL the 
interpretation developed above for (lle) and rotated it into maximum agreement with PARAFAC2, 
it might by a very useful partner to PARAFAC2 in multidimensional scaling. 
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A Generalization of the Multidimensional 

 
Scaling Model of Carroll and Chang 

 
Robert Jennrich 

 
(Mathematics Department, UCLA) 

 
 

1.  Carroll and Chang model 
 
Carroll and Chang (1970) assume each stimulus may be represented by a point 
 

pj = (xj1 , � , xjr) . 
 

The theoretical distance between the j and kth stimulus as judged by the ith individual is given by 
 

( )
1/ 2

2( )

1
d w x x .

r
i
jk it jt kt

t=

 = −  
∑  

 
For each i this defines a norm on the r-dimensional space which is the home of the stimulus points 
pj .  Each individual views the points differently, the difference being reflected in the dependence of 
the weight wit on individual index i. 
 
2.  Generalization 

 
In pictures, Carroll and Chang view the stimuli as points in an N-dimensional space. 

 
    •  
                                                           •            •  pj 
 
                                   •             •  
 
                                           •                  •  pk 
 
The most general Euclidean distance formula in such a space is 
 

d2(pj , pk) = (pj � pk) W (pj � pk) ' 
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where W is a symmetric positive definite matrix.  Carroll and Chang have demanded that W be 
diagonal.  We simply suggest relaxing this restriction.  Each individual i then has his own 
completely arbitrary Euclidean metric and the distance between the jth and kth stimulus as seen by 
the ith individual becomes 
 

( )( )( )

1 1
d w x x x x

r r
i
jk ist js ks jt kt

s t= =

 = − −  
∑∑  

 
3.  Estimation 
 
 For purposes of estimation the distances ( )d i

jk  are converted to inner products (Torgerson 
1958) 
 

( ) ( ) ( ) ( )( )2 2 2 2( ) ( ) ( ) ( ) ( )b 1/ 2 d d d di i i i i
jk jk j k

= − − − +
# # ##

 

 
where �⋅� means average as usual.  We have now, assuming no errors, 
 

( )

1 1
b w x x .

r r
i
jk ist js kt

s t= =
= ∑∑  

 
Using observed values of ( )b i

jk  we will attempt to fit these by least squares using the model on the 
right. 
 
4.  Algorithm 
 
 Let ( ) ( ) ( )( )B b , W w , X x .i

i jk i irs i js= = =   Compute 
 

( )( ) 1
Y B XW W X XWi i i ii i

−′= ∑ ∑  
 

( )X 1/ 2 X Y= +%  
 

( ) ( )1 1
W X X X B X X X .i i

− −
′ ′ ′=% % % % % % %  

 
X%  and W%  are the new values of X and W.  Iterate for convergence. 
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