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The ‘quasi-ALS’ algorithm for shifted factor estimation is generalized to three-way and n-way

models. We consider the case in which mode A is the only shifted sequential mode, mode B

determines shifts, and modes above B simply reweight the factors. The algorithm is studied using

error-free and fallible synthetic data. In addition, a four-way chromatographic data set previously

analyzed by Bro et al. (J. Chemometrics 1999; 13: 295–309) is reanalyzed and (two or) three out of

four factors are recovered. The reason for the incomplete success may be factor shape changes

combined with the lack of distinct shift patterns for two of the factors. The shifted factor model is

compared with Parafac2 from both theoretical and practical points of view. Copyright # 2003

John Wiley & Sons, Ltd.
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1. INTRODUCTION

The three-way shifted factor problem arises in various con-

texts, for example in electrophysiology [1] and some chemo-

metric problems [2,3]. We previously described the two- and

three-way shifted factor models [4] and developed a ‘quasi-

ALS’ algorithm to fit the two-way model [5]. In the first

section of this paper we extend the ‘quasi-ALS’ approach to

three- and higher-way data.

As in the two-way case, the three-way multilinear expres-

sion does not allow for position-shifted factors underlying

the data. One way to resolve the three-way shifting problem,

first proposed by Bro [2,6], is to use Parafac2. One can

directly fit Parafac2 to the profile data [7] or indirectly fit

Parafac2 to derived second-moment type data (e.g. cross-

product, covariance or correlation matrices) [8]. Typically,

three-way Parafac2** is written in terms of the cross-

products computed from the kth (frontal) slab of an

I � J � K data array. However, to facilitate the shifted factor

generalization, we will write it in terms of the jth lateral

slab, as

X0
jXj ¼ ChbjiUhbjiC0 þ Ej

U ¼ A0
jAj ð1Þ

where X0
jXj is a K�K cross-product matrix at level j (K being

the number of levels of mode C) and U is a cross-product

matrix for Aj. Using array notation (AIN) [9], the Parafac2

model in representative slice form corresponding to (1) is

y
jKK0 ¼ b

jR
b

jR0 cKR
c

K0R0�RR0

�
RR0 ¼ a

IjR
a

IjR0 (2)

The condition on U stated in (1) or (2) implies the invar-

iance of the factor relations in mode A across all levels of

mode B, but not the invariance of mode A factor loadings

themselves [8]. Bro uses this fact to relax the parameter

invariance requirement in the position-shifted mode,

thereby avoiding the position shifting problem.

However, the U invariance requirement is met only when

the position shift does not change the angles between se-

quential factors across the J slices. As Bro et al. [2] pointed

out, one such case occurs when all sequential factors are

shifted by the same amount at each of J slices; such identical

shifting does not alter the off-diagonal elements in U,

provided that the sequential factor loadings are negligible

at both ends. If not, the values in U will in general vary

across mode B levels under the position shifting of factors.

When the size of shift is not the same for all factors,

however, Parafac2 may fail to handle the position-shifting

problem, since factorwise independent shifting generally

causes U to vary across the J slices. In other words, the

independent shifting can cause different manifestations,

across J slices, of otherwise the same factor angles. One

may consider the factorwise identical shifting to be the

shifting of the (non-error part of the) observed sequential

data, and the factorwise independent shifting as the inde-

*Correspondence to: S. Hong, Department of Psychology, University
of Western Ontario, London, Ontario N6A 5C2, Canada.
E-mail: shong2@uwo.ca
**Note that (1) becomes indirect-fit Parafac1 if the sequential factors
are orthogonal, i.e. if U ¼ I.

Copyright # 2003 John Wiley & Sons, Ltd.



pendent shifting of latent sequential factors [4,10]. Unlike

Parafac2, SFA directly adjusts for the independent position

shifting at the factor level.

To derive the shifted factor model, we start from the

trilinear Parafac/Candecomp model [11,12]. By writing this

model in ‘representative slice’ form [13] for lateral (I�K)

slices of the array, we get

Xj ¼ AhbjiC0 þ Ej ð3Þ

where A and C are factor loading matrices for modes A and

C respectively and bj is the jth row in the mode B factor

loading matrix B; as usual, Ej represents residuals, in this

case the jth slice of the I� J�K residual array. As noted

earlier, the use of lateral slices is unconventional but will be

required to remain consistent with shifted factor mode

conventions [4]. We can avoid deciding how to slice the

data array if we use array notation [9], which gives a

symmetric representation of the standard Parafac1 model

of the full three-way array* as

x
IJK

¼ a
IR

b
JR

c
KR

þ e
IJK (4)

The simplest shifted factor generalization of the trilinear

model allows the factor positions to differ across the levels of

only one mode. Let mode A be a sequential mode and let the

sequential factors be independently shifted across levels of

the shifting mode (mode B). Then SFA models slice j in a

three-way data array X as

Xj ¼ j Að ÞhbjiC0 þ Ej ð5Þ

where the shifted version of A for slice j, j Að Þ, is the same

as in the two-way SFA model [5]. It is implied in (5) that the

sequential factor profiles are fixed across all J slices before

they are shifted at level j by the amounts specified in row j of

the shift size matrix S. That is, SFA actually estimates

sequential factors that are invariant in shape across all levels

of the other modes, but their position changes across the J

mode B levels. Thus the SFA model (5) can be considered

more restrictive than Parafac2 since it estimates the actual

shape of the sequential factors and not just their relations. On

the other hand, it is less restrictive than direct fit Parafac1

since it allows for changes in factor position.

Likewise the SFA model can be extended to n-way shifted

data as

Xjl��� ¼ j Að Þhbjihdli � � �C0 þ Ejl��� ð6Þ

where Xjl��� is the I�K matrix at level j; l; . . . in the

I� J�K� L� � � � n-way data array X.

In AIN, (5) can be written for the full three-way array as

x
IJK

¼ a½Iþsjr �R
b

JR
c

KR
þ e

IJK (7)

and (6) can be written for the full n-way array as

xIJKL��� ¼ a½Iþsjr �R
b

JR
c

KR
d

LR
� � � þ eIJKL � � � (8)

The estimation of parameters for SFA models is difficult,

because the shifting disturbs the multilinearity of factor

variation. This interferes with attempts to estimate factor

weights (e.g. A, B and C for model (5)) by regression

methods, as would be done in an ALS (alternating least

squares) approach. Here we describe some algorithms that

deal with this problem. As in Part II [5], we simplify the

exposition by only using the matrix approach (refer to

Reference [14] for the AIN equivalents of all equations in

the following sections).

2. THREE-WAY AND N-WAY
GENERALIZATIONS OF QUASI-ALS
ESTIMATION

We now focus on modifications for the three-way and n-way

generalizations of the SFA models (5) and (6) in which the

pattern of factor shifting differs across levels of only one

mode (i.e. mode B or shifting mode), as in the two-way SFA

model. The basic logic of mode A and B estimation remains

the same as in the two-way case. The estimation of the

mode(s) other than modes A and B is new but is similar to

the ALS estimation in standard Parafac1. As a result, the

three-way SFA (5) straightforwardly generalizes to the n-

way SFA (6).

2.1. B and S estimation
The two mode B parameter sets B and S must be estimated in

an interlocking fashion, as in the two-way case, except that bj

is now estimated by

b̂bj ¼ C � j Að Þ
� �0h iþ

x
ðIK�1Þ
j ð9Þ

where � represents the Khatri–Rao product (or columnwise

Kronecker product) [15]. Here x
ðIK�1Þ
j is an IK� 1 vectorized

version of Xj, ordered to conform with the generalized

inverse of the combined fixed parameters.

As before, (9) implies that sj is provided. If we assume that

shifts are integral values and that their maximum value is

smax, it is again possible to find the conditional global

optimum by means of the Exhaustive Integer Search (EIS)

procedure [5]. Equation (9) can be extended for the n-way

SFA (6) as

b̂bj ¼ � � �D � C � j Að Þ
� �0h iþ

x
ðIKL����1Þ
j ð10Þ

where x
ðIKL����1Þ
j is an IKL � � � � 1 vectorized version of the

I�K� L� � � � jth sub-block of the n-way data array, ordered

so that it can be multiplied with the combined fixed para-

meters of the modes other than mode B.

2.2. A estimation
In order to undo the shifting in the data so that the alignment

of the sequential mode levels is consistent between the data

and A, the unshifting must now be done on each slice j in the

data. It is also necessary to separate the data in each slice into

two parts before unshifting: one part is the variance con-

tributed by factor r and the other is the variance contributed

by the other factors.

To estimate the factor r contribution to slice j, we use

X̂XjðrÞ ¼ Xj � j Að�rÞ
� �

hbjð�rÞiC0
ð�rÞ ð11Þ

for the three-way case, and this can be generalized for the n-

way case as

X̂Xjl���ðrÞ ¼ Xjl��� � j Að�rÞ
� �

hbjð�rÞihdlð�rÞi � � �C0
ð�rÞ ð12Þ*The ‘representative slice’ version corresponding to (3) (i.e. sliced by

levels of mode B) is simply xIjK ¼ aIRbjRcKR þ eIjK.
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Now that the X̂XjðrÞ (or X̂Xjl���ðrÞ) variance is isolated from the

X̂Xjð�rÞ (or X̂Xjl���ð�rÞ) variance, one can realign (or unshift) these J

factor r contributions ‘slicewise’ in the three-way array X̂XðrÞ
(or sub-blockwise in the n-way isolated data array), using the

factor r shift values contained in sr (column r of S). This can

be written as

eXXðrÞ ¼
X̂XjðrÞ

sr

�1 X̂XðrÞ

� �
¼

X̂XjðrÞ

�sr

X̂XðrÞ

� �
ð13Þ

where the shifting operator �ð Þ�1 inverse-shifts each of J

lateral slices X̂XjðrÞ in the three-way array X̂XðrÞ by the jth value

in sr or, equivalently, shifts each of J lateral slices in X̂XðrÞ by

the jth value in �sr. Refer to the Appendix in Part I [4] for

details of the shifting operation. Using the shorthand con-

vention, (13) would be simply written as �1
r X̂XðrÞ

� �
.

Once the factor isolation and subsequent unshifting are

done, one can unfold the three-way (or n-way) array eXXðrÞ into

an I� JK (or I� JKL � � � ) matrix for use in the regression

estimation of ar. Now ar can be estimated as

âar ¼ eXXðI�JKÞ
ðrÞ c0r � b0

r

� �þ ð14Þ

where eXXðI�JKÞ
ðrÞ is an I� JK isolated, inverse-shifted and then

unfolded data matrix for factor r and � is the Kronecker

product. Equation (14) can be extended for the n-way case as

âar ¼ eXXðI�JKL���Þ
ðrÞ � � �d0

r � c0r � b0
r

� �þ ð15Þ

where eXXðI�JKL���Þ
ðrÞ is an I� JKL � � � isolated, unshifted and un-

folded data matrix for factor r.

2.3. WLS for the ends of factor profiles
To deal with the complication caused by the cells that

become empty after unshifting, we use the weighted least

squares (WLS) approach as used in the two-way case. The

WLS procedure for the augmented A in three-way SFA can

be written as

âair ¼ ~xx
0ð1�JKÞ
iðrÞ c0r � b0

r

� �
�w

0ð1�JKÞ
iðrÞ

h iþ
ð16Þ

The vector ~xx
0ð1�JKÞ
iðrÞ is row i in the I� JK isolated, unshifted and

unfolded data matrix eXXðI�JKÞ
ðrÞ ; and w

0ð1�JKÞ
iðrÞ is a 1� JK weight-

ing vector containing 1s (for valid cells in the ‘estimated’

data) and 0s (for empty cells and so filled with zeros), which

is row i in the I� JK weighting matrix WðrÞ for factor r. The

extended n-way version of (16) can be written as

âair ¼ ~xx
0ð1�JKL���Þ
iðrÞ

h�
� � �d0

r � c0r � b0
rÞ�w

0ð1�JKL���Þ
iðrÞ

�iþ
ð17Þ

where ~xx
0ð1�JKL���Þ
iðrÞ and w0

iðrÞ
ð1�JKL���Þ are row i respectively in the

I� JKL � � � isolated, unshifted and unfolded data matrixeXXðI�JKL���Þ
ðrÞ and in the I� JKL � � �weighting matrix WðrÞ for

factor r. Recall that the three-way (or n-way) data must first

be augmented, as before, by adding the beyond-window

levels, and hence the I in (16) and (17) is (the original I ) þ
2smax.

2.4. C estimation
The estimation of C bears the closest resemblance to the ALS

estimation in Parafac1. The only difference is that the col-

umns of A must be properly shifted before multiplying them

by bj to obtain the fixed parameters. Unlike the estimation of

A and B, one estimates all elements in C simultaneously, as

in the ALS estimation of Parafac1. A properly shifted and

combined set of fixed parameters appropriate for this simul-

taneous estimation can be obtained as

gABAB ¼

1 Að Þhb1i
2 Að Þhb2i

..

.

J Að ÞhbJi

2
6664

3
7775 ð18Þ

where gABAB is an IJ�R partitioned matrix in which the

columns of partition j are shifted by the values in sj and

then weighted by bj. Equation (18) can be extended for the n-

way case as

gABDABD � � � ¼ � � �D �

1 Að Þhb1i
2 Að Þhb2i

..

.

J Að ÞhbJi

2
6664

3
7775 ð19Þ

where gABDABD � � � is an IJL � � � �R partitioned matrix in which

the columns of the innermost partition involving levels . . . , l

and j are shifted by the values in sj and then weighted by bj,

dl and so on. Given gABAB (or gABDABD � � �) and the K� IJ unfolded

data matrix XðK�IJÞ (or XðK�IJL���Þ), C can be estimated for the

three-way case as

ĈC ¼ XðK�IJÞ ðgABABÞ0
h iþ

ð20Þ

and for the n-way case as

ĈC ¼ XðK�IJL���Þ ð gABDABD � � �Þ0
h iþ

ð21Þ

2.5. Fractional shift estimation
Once all parameters have converged in the EIS (Exhaustive

Integer Search) stage, the quasi-ALS procedure shifts to the

FLS (Fractional Line Search) stage, as in the two-way case [5].

The FLS procedure for the ‘higher-way’ cases is the same as

for the two-way case. This is because we limit our current

quasi-ALS algorithms to the cases where sequential factors

shift differently only on one mode (mode B) and the other

modes (above mode B) simply reweight the factors.

2.6. Modified procedures to accelerate
estimation
As the number of data modes increases, the application of

the current quasi-ALS procedure can become impractically

slow. Therefore it is necessary to apply with caution a couple

of the acceleration techniques described in the Appendix of

Part II [5].

3. DATA ANALYSIS

We first tested the quasi-ALS procedure by applying the

three-way SFA model (5) to error-free and fallible synthetic

data. We then fit the four-way SFA to a four-way chromato-

graphic data set previously analyzed by Bro et al. [2], in

which factors were shifted along the elution time mode. All

analyses used two-stage EIS (i.e. EIS1 and EIS2) and the

periodic shift search (i.e. applied each of the first 10 iterations

and then every 10th thereafter) in order to make the compu-

tation time practical (see the Appendix of Part II [5] for a
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description). In the four-way analyses the mode reduction

procedure was also used for the same reason.

3.1. Three-way synthetic shifted data
Two three-way error-free shifted data sets were created

following (5) in order to test the quasi-ALS procedure for

the three-way SFA model. The profiles given in Figure 1

(type I) are the sequential factors used to generate the three-

way shifted data. They are similar to those used for the two-

way shifted data (Figure 2 in Part II [5]) but are even less

steep than before and hence more difficult to recover. As

before, 5 levels at each end are extra ones, included to fill the

levels revealed after a maximum 5-level shift; this left 60

‘within window’ levels for mode A. True mode B and C

factor loadings were sampled randomly from a uniform

distribution of real numbers bounded by 0 and 1 exclusively.

Unlike the two-way case, the numbers of levels of modes B

and C were fixed at 15 and 10 respectively. Two kinds of shift

values were used. Real numbers were used for one set of true

shifts so that the resulting synthetic data better resembled

real shifted data. These true shifts were randomly sampled

from a uniform distribution of real numbers bounded by

�5.5 and 5.5 exclusively. Another set of the true shifts was

then obtained by rounding the sampled fractional shifts to

integers. The true A, B, C and S were then combined

following (5) to produce two sets of three-way error-free

shifted data. Fallible data were obtained by adding normally

distributed error to the error-free shifted data sets. The

error proportion in the fallible data is, on average, 15.1% of

the total mean square and 36.4% of the total variance. The

difference in the error proportion reflects the fact that the

mean of the true part is 1.47 standard units while the

expected mean in the error part is zero.

SFA, Parafac2 and Parafac1 were directly fit to each of the

four 60� 15� 10 shifted data sets, using 10 different random

starts. We refer the reader to Reference [7] for a description

of the direct fit Parafac2 algorithm used. SFA stopping

criterion was the same as in the two-way weighted factor

case: a maximum parameter change of 0.001% or a maximum

of 1000 iterations in each of EIS1, EIS2 and FLS. For

Parafac1 and Parafac2 the iteration limit was increased to

5000 but the parameter change criterion remained the same.

Size weights (A, B and C) were constrained to be non-

negative by using FNNLS [16], except for A in the direct

fit Parafac2. Table I summarizes the recovery correlations

and model fits of the best solution for each condition. The

recovery correlations are averaged over the three factors

within the solution.

Figure 1. Sequential factors (type I).The middle curve is the normal density function of 70 evenly
spacedstandarddeviatesfrom�3.3 to 3.3.Thepositivelyskewedcurve (left) is the chi-squareden-
sity functionof70evenlyspacedchi-squarevaluesfrom0.5 to35withdf¼12.Thenegativelyskewed
curve (right) is the sameas the positively skewed curve except that the orderof levels is reversed.
Theresultingprofilesarenormalizedsuch that themeansquareofeachcurvebecomesunity.

Figure 2. Recovered sequential factors from error-free (left) and fallible (right) three-way shifted
datawithintegershifts.Loadingsarenormalizedsuch thateach factorhasunitmeansquare.
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The quasi-ALS procedure perfectly recovers the factor

weights from the error-free data for the integer shift case

and nearly perfectly for the fractional shift case, confirming

that latent trilinear factor structure that is disturbed by factor

shifts can be recovered from three-way data by fitting the

SFA model (5). It also suggests that, at least under some

conditions, the factor loadings are uniquely determined and

that the quasi-ALS algorithm can find them. The shift size

parameters, however, are not as easy to recover. As noted in

the two-way case, this is due to a few missed shift estimates.

The recovery of weighted shifts S�B is perfect to four

decimals for the integer shift case and near perfect for the

fractional shift case.

For the fallible cases the recovery of parameters by SFA is

better than expected. The recovery correlation is, most times,

greater than 0.98 for A, B and C and greater than 0.90 for

S�B, despite the fact that more than one-third of the total

data variance is due to error.

When using the two types of true shifts, we initially

expected to find an advantage of the fractional shift search

over the integer search only when the true shifts were

themselves fractional. However, there is no recognizable

difference in fit and recovery between the integer and frac-

tional shift data cases. FLS significantly improves fit and

recovery for both cases, but it is hard to find a substantial

difference between the two cases, either before or after FLS.

There may be two reasons for this. First, the interpolation of

fractional shifts may be no more advantageous for the

fractional shift case than the integer case, because the se-

quential factors are so smooth that the two types of resulting

shifted data are not substantially different. Second, FLS

always improves fit and recovery even when true shifts are

integers and the data are error-free, unless EIS perfectly

recovers the integer shifts. Often FLS improves the shift

estimates by 1 unit toward the true values, and this tends

to happen more frequently when the true sequential factors

are somewhat difficult to recover (e.g. owing to smooth

slowly changing profiles).

Figure 2 shows the recovered sequential factor profiles

from the error-free and fallible shifted data sets. The right

plot shows that SFA recovers the overall pattern of the

sequential factors well, even when the amount of error is

substantial.

It is surprising to find that Parafac2 (PF2 in Table I) also

recovers B and C well; the recovery correlation is greater

than 0.99 in the error-free case and greater than 0.95 in the

fallible case. Even Parafac1 (PF1) recovers all factor loadings

unexpectedly well, with a recovery correlation greater than

0.94 for all modes. This surprisingly good recovery by the

Parafac models may have occurred because the sequential

profiles given in Figure 1 are flatter and smooth rather than

steep and/or jagged. As a result, the applied shifts are not

sufficient to invalidate either the model requirement of

Parafac1 that the position of the sequential factors is invar-

iant for all levels of mode B, or that of Parafac2 that the

angles between the sequential factors are invariant for all

levels of mode B. That is, a maximum shift of 5 (or 5.5 in the

fractional case) does not have as much effect on the values of

these profiles as it would have, for example, with steep or

jagged ones; thus even Parafac1 can recover the factors well.

To better understand the degree to which these data met

the Parafac2 requirement of constant factor angles, we

computed the cosines (i.e. congruence coefficients) between

shifted profiles. Table II shows how much the angles be-

tween shifted factors (i.e. off-diagonal values in U) vary

across the 15 mode B levels in the error-free integer-shifted

case. We use cosines instead of correlations because all the

profiles used in this study (and in spectral data in general)

are positive and hence correlations, which are based on

centered values, might be misleading. ‘True’ is the cosine

between the two subscripted type I factors before they are

shifted. The mean and standard deviation are computed

over the 15 sets of cosines in which the variation is due to

the different shifts. As expected, the shifting does not change

the angles between the sequential factors much. Thus it is not

surprising that Parafac2 recovers the factor loadings well.

We generated other sets of shifted data by using the

profiles illustrated in Figure 3 in order to investigate

the effect of violations of the constant-angle requirement

and the constant-position requirement on the behavior of

Parafac1, Parafac2 and SFA when the factor profiles are not

so smooth. To save data-fitting time, the data size was

reduced from 60� 15� 10 to 30� 10� 7 and the number of

factors from three to two. All profiles in Figure 3 are identical

except for their relative position. The two profiles are sepa-

rated by 17 levels in type II and by 4 levels in type III. A set of

integer shifts was chosen such that the factor angle changed

Table I. Recovery correlations and model fits (R2) for three-way
shifteddata (type I)

Integer shifts Fractional shifts

Error-free Falliblea Error-free Fallibleb

Parameter recovery (r)

SFA A 1.0000 0.9883 0.9991 0.9878
B 1.0000 0.9906 0.9999 0.9916
C 1.0000 0.9929 1.0000 0.9920
S 0.9194 0.7688 0.9217 0.8134
S�B 1.0000 0.9154 0.9957 0.9201

PF2 B 0.9977 0.9577 0.9979 0.9575
C 0.9949 0.9733 0.9953 0.9733

PF1 A 0.9761 0.9625 0.9781 0.9643
B 0.9557 0.9489 0.9526 0.9476
C 0.9967 0.9881 0.9969 0.9885

Fit to data (R2)

SFA 1.0000 0.6489 0.9999 0.6486
PF2 0.9988 0.7394 0.9988 0.7390
PF1 0.9670 0.6240 0.9679 0.6240

aError proportion is 15.08% of total mean square and 36.36% of total
variance; mean of the true part is 1.4709 standard units.
bError proportion is 15.08% of total mean square and 36.38% of total
variance; mean of the true part is 1.4722 standard units.

Table II. VariationofcosinesinUduetoindependent shiftingofthe
type Iprofiles

True Mean SD

�12 0.6482 0.6503 0.1078
�13 0.6482 0.6479 0.1191
�23 0.2194 0.2296 0.0707
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substantially across the 10 mode B levels for the type III

profiles but not for the type II, again given a maximum shift

of 5. Table III reports the true shifts and the resulting cosines

for the two profile types. True mode B and C factor weights

were randomly sampled from a uniform distribution of real

values bounded by 0 and 1 exclusively. Since the two peaks

are far from each other in type II, the shifting does not cause

the cosine between them to increase substantially (its stan-

dard deviation is 0.026). In contrast, the shifting changes the

cosine substantially in type III (its standard deviation is

0.316). Consequently, Parafac2 should be able to almost

perfectly fit the resulting type II data, but not type III. The

same convergence criterion and iteration limit were used for

all model fitting as before.

Table IV summarizes the recovery correlations and model

fits of the best solution out of five random starts for the error-

free shifted type II and III data. SFA perfectly recovers the

parameters for both data types. As expected, Parafac2 almost

perfectly recovers B and C for the type II data but clearly fails

for type III. The cosine recovered for the type III data by

Parafac2 indicates that the solution is degenerate (in the

precise mathematical sense [17–20]), and the degeneracy

happened consistently. This consistent occurrence of degen-

eracy seems to be caused by the violation of the Parafac/

Parafac2 requirement of invariant factor angle [17–20]. The

model fails when the factor angle varies substantially across

the levels of the shifting mode. Table IV also clearly shows

that Parafac1 fails for both types of data, as we expected.

Both types of profiles are sufficiently steep that, given the

maximum shift of 5, the Parafac1 requirement that the

position of the sequential factors is invariant for all levels

of the shifting mode does not hold.

3.2. Chromatographic data with retention
time shifts
As mentioned earlier, Bro et al. [2] suggested using Parafac2

to resolve the position shift problem. They directly fit

Parafac2 to a 28 (elution time)� 15 (sample)� 20 (excitation

wavelength)� 78 (emission wavelength) chromatographic

data set in which the elution profiles were assumed to shift

differently from one sample to another. See Reference [2] for

further details. We reanalyzed the same data to assess

whether SFA and Parafac2 are appropriate. We used an

edited version: first every other level of the original 78

emission levels (250–560 nm emission with a 4 nm interval)

was taken, and then the first two resulting levels (250 and

258 nm), in which all values are missing, were deleted,

resulting in a 28� 15� 20� 37 four-way chromatographic

data array.

Figure 3. Sequential factors (types IIand III).Fortylevelswereused toproduce30windowlevelsfor
thesequentialmodein theresultingshifteddata.

Table III. Shiftsandresultingcosines (�12) of type IIand IIIprofiles

Mode B Factor 1 Factor 2 �12 of �12 of
level type II type III

1 �3 �5 0.0115 0.5551
2 �1 0 0.0260 0.1720
3 4 1 0.0070 0.8470
4 �1 �3 0.0115 0.5551
5 �5 3 0.0969 0.0595
6 �2 �1 0.0260 0.1720
7 5 2 0.0070 0.8470
8 3 0 0.0070 0.8470
9 1 3 0.0322 0.1479

10 1 �1 0.0115 0.5551

Table IV. Recovery correlationsandmodel fits (R2) for three-way
shifteddata (types IIand III)

Type II Type III

Parameter recovery (r)

SFA A 1.0000 1.0000
B 1.0000 1.0000
C 1.0000 1.0000
S 1.0000 1.0000
S�B 1.0000 1.0000

PF2 B 0.9996 0.8491
C 0.9997 0.6888
�12 0.0936 �0.9894

PF1 A 0.4897 0.7348
B 0.4749 0.4329
C 0.5210 0.5093

Fit to data (R2)

SFA 0.9999 1.0000
PF2 0.9999 0.9949
PF1 0.4515 0.6892
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By taking advantage of the fact that multilinearity holds

well in the excitation and emission modes but not in the

elution and sample modes, because the elution profiles shift

differently across samples, Bro et al. [2] devised an elegant

check of the data structure for this unusual four-way case.

Since the shift problem is supposed to be independent of

both the excitation and emission modes, and the original

data set is four-way, it is possible to obtain an ideal reference

solution against which a competing model can be assessed.

The 28� 15� 20� 37 four-way data were first unfolded into

a 420� 20� 37 three-way array by merging the elution and

sample modes into what Tucker [21] and Kroonenberg [22]

call a ‘combination mode’. Since the 420 levels in the combi-

nation mode can then be considered as independent mea-

surement units, it is reasonable to expect trilinearity in the

unfolded data so far as multilinearity holds in the excitation

and emission modes.

Four-way Parafac2 and four-way SFA are considered here

as two competing models for fitting these chromatographic

data. The four-way Parafac2 model has the form

X0
jkXjk ¼ DhckihbjiUhbjihckiD0 þ Ejk

U ¼ A0
jkAjk

ð22Þ

where X0
jkXjk is an L� L (L being the number of levels in

mode D) cross-product matrix at level j in mode B and level k

in mode C. It implies that the relationships (cosines) between

factors in mode A are invariant across all combinations of the

mode B and C levels, although A itself is free to vary, even in

its number of levels, across these combined levels. We can fit

(22) to the data by taking the elution mode as mode A and

the sample mode as mode B. The Parafac2 fitting implies that

the shifting along the elution mode does not change the

interrelation of the sequential factors across all combinations

of a sample and an excitation (or emission) wavelength. The

invariance of factor angles must hold across the excitation or

emission wavelengths for multilinearity to hold in these

modes.

The four-way SFA model can easily be drawn from the n-

way SFA model (6) by taking the shifted mode (mode A), the

shifting mode (mode B) and two other modes (modes C and

D) to be related as

Xjl ¼ j Að ÞhbjihdliC0 þ Ejl ð23Þ

where Xjl is the I�K data matrix at level j and l in the

I� J�K� L four-way data array X. When modeling the

chromatographic data using four-way SFA, it is preferable

that the shifting pattern of the elution profiles is independent

from one sample to the next because this provides additional

information to help uniquely identify the factors.

The number of factors was set to four, following the result

of the dimensionality test performed in Reference [2]. There

were many missing cells in the fully crossed four-way

chromatographic data array (36.9%), since it is impossible

to obtain information on the emission levels below excita-

tion. To handle the missing elements, an alternating

weighted least squares procedure was used in the Parafac1

fitting. Weights of zero were assigned to both the missing

data cells and those combinations of fixed parameters in the

ALS estimation that corresponded to the missing elements in

the data. Iterative imputation adopted for the four-way

Parafac2 and SFA replaced missing elements with the values

predicted by the model after every iteration, which also gives

a least squares solution [23].

The same stopping criterion and iteration limits were used

for Parafac1 and Parafac2 as in the synthetic data analysis.

However, because the quasi-ALS procedure for the four-way

SFA takes much longer than the standard ALS estimation,

even with two of the time-saving strategies noted in the

Appendix of Part II [5] (two-stage EIS and periodic shift

search), the stopping criteria had to be relaxed: a maximum

parameter change of 0.01% and an iteration limit of 500 in

each stage of the SFA. Since the factor weights correspond to

amounts of physical entities in all modes, factor loading

parameters were constrained to be non-negative in all ana-

lyses except for the elution mode in the Parafac2 analysis.

The FNNLS algorithm [16] was used again for the non-

negativity constraint to save time. Ten different random

starts were tried in both the three-way Parafac1 and four-

way Parafac2 analyses. However, only two were applied for

the four-way SFA, since it takes much longer, particularly

when there are as many as four factors*.

Figure 4 shows the spectra in the excitation and emission

modes estimated by three-way Parafac1, and four-way

Parafac2 and SFA. It is clear in Figure 4 that Parafac2

successfully resolved the position-shifting problem in the

chromatographic data. The factor loadings correlate highly

between the Parafac1 and Parafac2 solutions, ranging from

0.9898 to 0.9996 in the excitation mode and from 0.9603 to

0.9999 in the emission mode. SFA, however, recovers a pair

of almost perfectly redundant factors in the excitation and

emission modes; factors 2 and 4 have a correlation of 0.9984

in the excitation mode and 0.9959 in the emission mode.

These factors correlate highly with the Parafac1 factor 2

(0.9968 in the excitation mode and 0.9980 in the emission

mode). The SFA factor 1 seems to maximally approximate

both Parafac1 factors 1 and 4, while the remaining factor (F3)

in these two solutions also matches well (r¼ 0.9671 in the

excitation mode and 0.9619 in the emission mode). Thus SFA

is only partly successful in recovering the latent structure of

the chromatographic data. Table V summarizes the model

fits of the reference (Parafac1), Parafac2 and SFA solutions.

We further investigated the Parafac1 reference solution to

better understand the latent structure of the chromato-

graphic data. First we reconstructed separate elution and

sample modes for each of the 10 Parafac1 solutions by

reshaping each 420� 4 estimated factor loading matrix of

the combination mode into a 28� 15� 4 parameter array.

(Recall that these parameters were estimated not by a fully

crossed multilinear model but by the less restrictive model

that does not require multilinearity between the elution and

sample modes.) The size of shifts for each factor was then

obtained from this reshaped parameter array by taking the

relative difference in the highest peak location of elution

profiles among the 15 samples. The resulting shift matrices

were highly reliable (identical in nine out of the 10 solutions).

*In the time since this study was conducted, desktop computer
speeds have increased by a factor of 10–20, making SFA of larger
problems much more practical.
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Figure 5 shows that the shifting pattern of elution profiles

is fairly similar across factors in most samples, which implies

that, for most of the chromatographic data, shifting can be

interpreted in terms of shifts at the ‘surface’ or data level

instead of the latent level.

In addition to the position shifting, the elution profiles in

the Parafac1 reference solution were found to change their

shape substantially for some samples, although in theory

they should be identical [2]. Therefore we edited the chro-

matographic data to use only those samples for which the

shape of the elution profiles is relatively homogeneous.

Selected are samples 3, 4, 5, 6, 7, 9 and 15, providing a

28� 7� 20� 37 four-way data array. Then we fit the four-

way SFA to the resulting ‘more homogeneous’ chromato-

graphic data to get a possible indication of whether the shape

change of elution profiles had been an important cause of the

redundant factors. However, the redundant factors did not

disappear. Both data sets seem to have a very similar SFA

factor structure; the factor loading correlations range from

0.9740 to 0.9997 in the excitation mode and from 0.9917 to

0.9998 in the emission mode.

The redundant factors could have occurred because the

solutions were locally optimal (or simply prematurely

stopped). Although both more random starts and a more

stringent convergence criterion are required to increase the

chance of obtaining the global minimum, it was not practical

to apply them at the time these studies were done because of

the heavy computational load of the quasi-ALS procedure

Figure 4. Excitation (left) and emission (right) spectra estimated by three-way Parafac1 (top), four-way Par-
afac2 (middle) and four-way SFA (bottom). All factors are numbered so that they are comparable across the
threemodelsandconsistent betweentheexcitationandemissionmodes.

TableV. Model fitsby Parafac1,Parafac2 andSFA

Model MSE R2

Three-way PF1 154.2466 0.9893
Four-way PF2 216.4249 0.9850
Four-way SFA 479.2075 0.9474

Figure 5. Shiftsinferred fromthe three-wayParafac1solution, rounded tointegers, andcentered foreach factor.
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for the four-way data. Instead we tried a different remedy.

Given the ‘reference’ shifts inferred from the Parafac1 solu-

tion and the Parafac1 excitation and emission factor weights,

it is possible to obtain an ideal solution of the factor weights

for the elution and sample modes. By holding S, C and D

fixed at the reference solution values and fitting four-way

SFA, we obtained the ideal solution for A and B. The elution

profiles estimated with the constrained values are compared

with those from the unconstrained SFA in Figure 6. The

profiles match well for all but factor 4, which is positioned

farther from factor 2 in the constrained solution than in the

unconstrained one.

In order to understand why the redundant factors occur,

we again consider the spectra estimated by different models

in Figure 4. As noted previously, the SFA factors 2 and 4 are

almost identical and the SFA factor 1 approximates both

Parafac1 factors 4 and 1. To further investigate which SFA

factor corresponds to which Parafac1 factor, we compared

the factor sizes among models. Table VI shows each factor’s

percentage of the sum of squared factor weights in the mode

that contains the original scale of the data, summarized by

models. The sum of squared factor weights is different from

the variance accounted for by factors, since the fit data are

not centered. However, it can be a good approximation of the

relative magnitude of factor contribution to the data, in that

all factors are theoretically non-negative and hence the

additive constant in factor loadings might be more or less

evenly spread out across factors. Given Figure 4 and

Table VI, it seems to be the case that the Parafac1 factor 2

splits into the unconstrained SFA factors 2 and 4 and that the

unconstrained SFA factor 1 fits the same portion that the

Parafac1 factors 1 and 4 explain.

It is perhaps not surprising that the constrained SFA per-

centages are very close to those for Parafac1, since S, C and D

are predicted by Parafac1. Another interesting observation in

the constrained SFA solution is that the mean square error

(or badness of fit) has increased substantially, compared with

the Parafac1 solution, when the elution and sample modes

are further decomposed. For example, MSE increases from

105.6462 (Parafac1) to 707.5414 (constrained SFA) when the

7-sample data are analyzed. Because Parafac1 provides S, C

and D and the other two modes are not decomposed in either

the three-way Parafac1 or the four-way Parafac2 analysis, we

can attribute the large MSE increase to the ‘badness’ of the

bilinearity between the elution and sample modes.

To further test whether the SFA solution was a local

optimum, we initialized all parameters except shifts with

the best estimates: the excitation and emission weights from

the Parafac1 reference solution, and the elution and sample

weights from the constrained SFA solution. However, this

‘best’ starting position also soon approached the ‘redundant’

factor solution in EIS1, after about 40–50 iterations.

To make more random starts feasible, we reconstru-

cted two three-way chromatographic data sets (elution�
sample � excitation and elution� sample� emission) based

on the reference solution, using the mode reduction proce-

dure. As noted in the Appendix of Part II [5] such recon-

structed data are hypothetical and subject to the validity of

the reference solution. We fit the three-way SFA model (5) to

the reconstructed data sets by using 10 random starts and

with a more stringent convergence criterion: a maximum

parameter change of 0.001% and an iteration limit of 1000 in

each stage. The redundant factors persistently appeared in

all three-way SFA solutions. Thus we consider it unlikely

that the occurrence of the redundant factors is simply due to

a local optimum.

There are other possible reasons why the Parafac1 factor 2

is split up into the SFA factors 2 and 4 or, equivalently, why

the SFA factor 1 fits both the Parafac1 factors 1 and 4. First, as

already noted, the shifting pattern of the four factors in

Figure 6. Elution profiles from unconstrained (top) and constrained (bottom) SFA. Factors are
numbered tobeconsistent with theSFAfactorsin Figure 4.

TableVI. Percentagesof sumof squared factoraweightsin scaled
mode

F1 F2 F3 F4

Parafac1 11.3 66.3 9.4 13.0
Parafac2 14.8 61.0 10.9 13.4
Constrained SFA 10.8 69.1 8.4 11.6
Unconstrained SFA 28.9 44.8 16.8 9.5

aFactors are numbered to be consistent with those in Figures 4 and 6.

Shifted factor analysis—Part III 397

Copyright # 2003 John Wiley & Sons, Ltd. J. Chemometrics 2003; 17: 389–399



Figure 5 is very similar in most samples. In the error-free

case the lack of independence in shifting pattern would not

impair the unique and valid recovery of parameters from

the shifted data in which multilinearity is otherwise per-

fectly exhibited. In some fallible cases where error is fit,

however, it might cause SFA to have problems in identify-

ing the sequential factors. Second, SFA seems to compro-

mise the excitation and emission weights in order to further

decompose the elution and sample modes in which (bi)li-

nearity is only partly present. Third, the elution profiles

estimated by SFA look very similar to one another (e.g.

constrained SFA factors 1, 2 and 4 in Figure 6). If the

distance between the peaks of two such similar sequential

factors is within the allowed shifting distance in the SFA

fitting, they may be easily confused with each other during

the estimation of their positions. We consider this a new

type of indeterminacy in SFA. In conclusion, it is not clear

which, if any, of the proposed explanations for the redun-

dancy in the SFA solutions is correct, and so this issue is

unresolved.

4. DISCUSSION

We have shown how the two-way shifted factor model [5]

and its estimation algorithms can be easily extended to

multiway (i.e. higher than two-way) cases, at least when

the added mode(s) simply reweight the shifted factors.

Standard multilinear models such as Parafac1 are already

unique under certain conditions (e.g. the Kruskal conditions

for factor independence [24]). Nonetheless, in cases where

some sequential factors are independently shifted, SFA can

take advantage of this added source of systematic latent

variation to provide even more robust and accurate recovery

of the latent structure.

As with the two-way SFA, the multiway shifted factor

models have several characteristics not present in the simple

multilinear case: (a) factors shifting independently (i.e. at the

latent level) are easier to identify than those that shift simulta-

neously (i.e. at the data level); (b) shifted factors are easier to

identify when the sequential factor profiles are distinctive

from one another in shape than when they are similar; (c)

steep and/or jagged sequential factors are easier to identify

than flatter and/or smooth factors [5,10]; and (d) the mode B

(i.e. shift-controlling mode) factor weights moderate not only

factor influence, but also the impact of shifting.

When profiles shift along a sequential mode, simple fitting

of Parafac1 is no longer appropriate. If the shifting has

occurred at the data level (i.e. sequential factors are shifted

simultaneously), it can be undone at the data level by

preprocessing the shifted data so that the sequential data

profiles are lined up. Then one can fit Parafac1 to the

position-aligned sequential data as mentioned in Part I [4].

A simple example of such a preprocessing method is

maximization of cross-correlations between sequential data

profiles, as Cattell [25] did in his time-corrected P-technique.

Most sophisticated data-preprocessing techniques for the

position shift problem include, among others, time warp-

ing [26,27], gradient-based motion estimation [28,29], mini-

mization of structural complexity due to shift variance

[30,31], and regional shift alignment by partial linear fit [32].

As a means of dealing with factor shifts, the shifted factor

analysis method has both advantages and disadvantages

compared with Parafac2. SFA relaxes the multilinearity

requirement of Parafac1 in mode A (i.e. the shifted mode)

by allowing sequential factors to shift in position. Parafac2

also relaxes the multilinearity but in a different way. It

allows sequential factors (i.e. the mode over which cross-

products are computed) to be anything that fulfils the

Parafac2 condition of invariant factor angles (i.e. U, for

example in (22)) over the shifting mode. When sequential

factors are independently shifted and invariant in shape,

SFA properly resolves the non-multilinearity caused by the

latent level shifting. When sequential factors change shape as

well as position, Parafac2 can be more useful so long as the

angles between sequential factors do not change too much

across levels of mode B. When the invariant factor angle

condition is seriously violated, the Parafac2 solution be-

comes consistently degenerate.

Another important distinction between SFA and Parafac2

is that sequential factors are explicitly modeled in SFA as a

common set of position-shifted profiles which are the same

at all levels of the other modes. In contrast, they are allowed

in Parafac2 to change over the shifting mode in any way that

preserves the angles between them. Thus, if it is theoretically

important to identify a common, invariant set of sequential

factors that are position-shifted independently over a data

mode (i.e. the shift-controlling mode), SFA is the preferred

approach.

The current quasi-ALS procedure becomes very time con-

suming as the data array and/or model dimensionality

becomes large, particularly in the number of data modes.

In our experience (with a 400 MHz processor) it is practical

up to three-way cases such as the 60� 15� 10 synthetic

shifted data, with three factors and 11 allowed shifts in the

analysis. For example, with the speed-up provisions, the

two-stage EIS and periodic shift search every 10th iteration,

one random start took about 30 min to converge. The in-

crease in the computation time is approximately exponential

to the number of factors and multiplicative to the maximum

allowed shift and the number of levels in all modes. Even

when the two-stage EIS and the periodic shift search proce-

dures are used, the SFA fitting of the four-way chromato-

graphic data was too slow to apply, say, 10 random starting

positions. Thus faster computers and further algorithmic

development will be needed for higher-than-three-way cases

and large three-way cases.
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