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Some existing three-way factor analysis and MDS models incorporate Cattell’s "Principle
of Parallel Proportional Profiles". These models can--with appropriate data---empirically de-
termine a unique best fitting axis orientation without the need for a separate factor rotation
stage, but they have not been general enough to deal with what Tucker has called "interac-
tions" among dimensions. This article presents a proof of unique axis orientation for a consid-
erably more general parallel profiles model which incorporates interacting dimensions. The
model, Xk = A ADk H BDk B’, does not assume symmetry in the data or in the interactions
among factors. A second proof is presented for the symmetrically weighted case (i.e., where
ADk = BDk). The generality of these models allows one to impose successive restrictions to
obtain several useful special cases, including PARAFAC2 and three-way DEDICOM.

Key words: Parallel proportional profiles, intrinsic axes, DEDICOM, PARAFAC2, Cattell,
trilinear models, quadrilinear models, factor rotation problem, multidimensional scaling, prin-
cipal components, oblique confactor.

The difference between independent and "interacting" dimensions in analysis of
three-way data is illustrated by the following two familiar models,

Xijk

R

= E airbjrCkr + eijk, and
r=l

R S T

Xijk = E E E airbjsCktgrst + eijk.

r=l s=l t=l

The first is the CANDECOMP model, which forms the basis for the INDSCAL mul-
tidimensional scaling procedure (Carroll & Chang, 1970). It is also the PARAFAC
model that is the basis of a three-way factor analysis procedure (Harshman, 1970;
Harshman & Lundy, 1984, 1994). The second is Tucker’s Three-Mode Factor Analysis
model (Tucker, 1963, 1964, 1966), the basis for Kroonenberg and de Leeuw’s (1980)
TUCKALS programs. In both models, a, b and c are factor weights associated with the
three ways of the data (which we call Modes A, B and C, respectively). In the first
model, factor contributions to each data point are independent: the weights for
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factor r in Mode A are multiplied only by the weights for factor r in Modes B and C,
with the summation over all R factors. In the second, however, the factors interact in
their contributions to the data: the summation is over all possible combinations of
dimensions (with g weighting the contributions of each combination). This gives the
second model greater generality and a great deal of "rotational freedom", which can
make interpretation of results more challenging but allows the study of complex three-
way variation that cannot be fit by simpler models such as PARAFAC.

Uniqueness. A singular characteristic of the first model is its "intrinsic axis prop-
erty". That is, a best-fitting solution not only determines a configuration of points in a
reduced dimensional space, it also defines a unique best-fitting orientation of axes or
dimensions in that space; axis orientation is thus an "intrinsic" part of the model. This
uniqueness of axis orientation can offer an empirical solution to the "rotation problem"
of factor analysis and MDS, when the data are appropriate. Uniqueness is obtained by
using the third mode of the data to seek "Parallel Proportional Profiles" of factor
loadings or scores (Cattell, 1944; Cattell & Cattell, 1955). The potential importance and
empirical validity of such dimensions has been argued elsewhere by Cattell (e.g., 1944,
1978) and by the present authors (e.g., Harshman, 1970; Harshman & Lundy, 1984, pp.
147-151, 163-168). Carroll and Chang (1970) also pointed out the uniqueness property
of the trilinear model and the important advantage of INDSCAL over two-way MDS
when appropriate data are available.

Mathematical proof that Parallel Profiles can determine a unique axis orientation
was first provided by Cattell and Cattell (1955). Jennrich (in Harshman, 1970) devised
the first proof of uniqueness for a Parallel Profiles three-way factor model, and non-
equivalent proofs (e.g., providing different sufficient conditions for uniqueness) were
subsequently presented by Harshman (1972a), and de Leeuw and Pruzansky (1978).
The most complete mathematical study of the rank of three-way arrays and the unique-
ness of three-way decompositions was done by Kruskal (1976, 1977, 1981, 1989). More
recently, interesting contributions have been made by Leurgans (1991) and Leurgans,
Ross, and Abel (1993).

Synthesis of models. It would be useful in some situations to obtain intrinsic axes
solutions for models incorporating interactions among dimensions. The uniqueness
could help "tie down" empirically the wide range of solutions that the interaction terms
otherwise make possible, and facilitate the discovery of new generalizations about
interacting processes. One simple example is the issue of oblique versus orthogonal
axes and the role of "g" in the factorial models of intellectual abilities. Another model
of considerable potential interest is an oblique axis version of INDSCAL. It would
allow for stimulus characteristics on two different dimensions to interact when contrib-
uting to overall stimulus (dis)similarities (see, for example, MDS analysis of the Size-
Weight illusion, Dunn & Harshman, 1982).

A long-standing unresolved question has been whether models can combine inter-
acting or oblique dimensions with the Proportional Profiles principle in a way that
preserves dimensional uniqueness. One discouraging finding was Meredith’s (1964)
demonstration that if one permits unrestricted individual variation in the angles among
oblique or interacting dimensions, nonunique proportional profiles solutions result.
Harshman (1972b) subsequently conjectured, however, that proportional profiles mod-
els of intermediate generality, where some constraints are imposed on the variation of
the factor correlations or interactions, could retain the uniqueness property. The
PARAFAC2 model was offered as a case in point. Its uniqueness in the general case
was questioned by Carroll and Wish (1974), and they reported finding a proof that with
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only two parallel occasions the model was not unique. The question of its uniqueness
or nonuniqueness with three or more parallel occasions has resisted solution for over 20
years. Cattell has pursued essentially the same problem viewed in a two-mode context
(which he calls the "Oblique Confactor rotation" problem; Cattell, 1978) for more than
30 years without success.

The PARATUCK PT2 Model

We present here a very general Proportional Profiles model which incorporates
interacting dimensions. Because it integrates two lines of current three-mode research,
one based on Cattell’s Parallel Profiles principle and the other on Tucker’s three-way
interaction approach, we have adopted a suggestion by Kroonenberg (personal com-
munication in September of 1989) that this type of model be called "PARATUCK". In
fact, we use "PARATUCK2" (abbreviated to "PT2") for the model given below, since
it resembles the T2 variant of Tucker’s Three Mode Factor Analysis (see Kroonenberg,
1983; Tucker 1972). We have also formulated several natural extensions--a
PARATUCK3 or PT3 model which more closely approximates the Tucker T3 struc-
ture, and a four mode PT4 modelmbut restrict ourselves to PT2 here.

Notation and Model

Consider an I by J by K three-way array X for which the three "ways" or "modes"
are labeled (measurement or classification) Mode A, Mode B and Mode C and are
indexed by i,j and k respectively (i = 1,..., I;j = 1,..., J; and k = 1,..., K). For
notational convenience, we consider the array to be a stack of K successive I by J
"slices" or "frontal slabs", with Xk being the k-th two-way slice or slab, and give the
general structure of X using an arbitrary Xk. Thus the PT2 model is written

Xk = A ADk H BDk B’,

where A is the I by R factor loading or factor pattern matrix for Mode A; ADk (pro-
nounced "sup A D sub k") is an R by R diagonal matrix containing the weights for the
columns of A at level k of the third mode. Similarly, BDk ("sup B D sub k") is an S 
S diagonal matrix giving the weights at level k for the columns of B, the J by S factor
loading or pattern matrix for Mode B of the data. Note that the R diagonal elements of
ADk are the R elements in row k of AC, the K by R Mode C weight matrix associated
with A. Thus, adrr,k = ackr; likewise, BDk has diagonal elements taken from row k of
BC, the K by S Mode C weight matrix associated with B, and so bd =ss,k bCks. The
elements of the R by S matrix H give the relative strength of different "interactions"
between the factors of Mode A and those of Mode B. By convention, designations "A"
and "B" are assigned so that R -> S.

It can be seen that PT2 is general in that it requires neither symmetry of the data
or model nor the same dimensionality for Modes A and B; in these ways, it resembles
Tucker’s T2 and T3 models. Nonetheless, it is a true Proportional Profiles model
because the three-way variations in structure arise solely from changes in the weights
on dimensions, and so it is more restricted than Tucker’s T2 or T3. PT2 can also be
viewed as a three-way version of asymmetrically weighted Dual Domain DEDICOM
(e.g., Harshman, Green, Wind & Lundy, 1982). The It matrix would then be the
asymmetric relationship matrix (designated R in the DEDICOM model).

A family of PT2 models, some of which are three-way generalizations of the
DEDICOM models discussed by Harshman et al. (1982), can be generated by putting
various constraints on the above model. Considering only cases where R = S, we get
the following:
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I. Asymmetrically weighted Dual Domain DEDICOM, where there are no added
constraints.

2. Symmetrically weighted Dual Domain DEDICOM, where ADk = BDk.
3. Asymmetrically weighted Single Domain DEDICOM, where A = B.
4. Symmetrically weighted Single Domain DEDICOM, where A = B and ADk =

BDk.
5. PARAFAC2, where A = B, ADk -- BDk and H is symmetric; also essentially the

scalar product form of oblique INDSCAL.
6. Symmetrically weighted Skew-symmetric DEDICOM (scc Dawson & Harsh-

man, 1986 for the two-way case), where A = B, ADk -- eDk, H is skew-
symmetric, R is an even number and the factors are pairwise equal in Mode C
(i.e., the diagonals are pairwise equal in Dk).

In the following sections, we present proofs of the uniqueness of axis orientation
for both the general PT2 model and for the symmetrically weighted version (i.e., where
ADk = BDk), subject to the restrictions that R = S and H has no zeros. (These
restrictions simplify certain steps in the argument, but we believe that they are not
always required for uniqueness; see discussion.) Under these conditions, uniqueness is
proven for all of the above special cases except for Skew-symmetric DEDICOM.

PT2 Theorem 1 (Nonsymmetric Weights, R = S Case)

Theorem

Consider an I × J × K three-way array X with the following (PT2) structure

Xk = A ADk H BDk B’, (1)

where A is I × R, B is J × S, H is R × S, ADk is R × R diagonal and BDk is S × S
diagonal. Suppose there is an alternative representation of X with matrices of the same
size and structural form

= fi (2)
We show that, under the assumptions given below, the two representations are neces-
sarily related as follows:

A(Ap AA) = (3)

~(Bp BA) = ¢4)

(A~, AA-~ Ap,)H(8 P 8A-~ B~,) = H, (5)

and that for any Xk # 0
(Zk AP’)AI~k(Ap A~-I) = ’ and

(6)

(Z~-I Bp,)BI~k(BP B~-1) = BDk’ (7)

where the A and ~ matrices are diagonal, the P are permutation matrices, and the zk are
nonzero scalars. In other words, the representation in this form of any such _X is unique
up to trivial permutation and/or rescaling of columns.
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Assumptions. We assume that A, B and H have full column rank, H has no zero
elements, and that there is "adequate variation in the dimension weights". We assume
for this theorem that R = S (but for clarity, and to facilitate subsequent possible
generalizations, we maintain the two symbols R and S).

Adequate variation in dimension weights. Let us define MAX = RS(R + 1)(S 
1)/4. This is the maximum number of unique d-weight combinations that can be com-
posed using two diagonal elements (possibly the same one twice) from each of k and
BDk. We also define a vector ~’k whose MAX components are the d-weight combina-
tions so constructed. That is, the elements of ~/k are as follows:

a 2 bd2 a 2 b 2 a a bd2
dll,k l~,k ..... dRR,k dss,k, d~l,k d22,k 1~,~ .... ,

b 2 a 2
ad(R-1)(R-1),k adRR,k dss,k, dll,k bdll,k bd22,k, ... 

a 2 bddRR,k (S-D(S-D,k bdss,k, adH,k ad22,k bdH,k bd22,k, ¯ "" 

ad(R_l)(R_l),k adRR,k bd(s_l)(S_l),k , (8)

where adrr,k refers to diagonal r of ADk and bdss,k to diagonal s of BDk.
The factor weight variation across k is "adequate" to uniquely determine the axis

orientation of the solution, given the following two conditions:

i. There are at least MAX distinct k for which the associated ~/k are linearly
independent (so that the matrix formed by these vectors has rank MAX) and

ii. All of the Dk are full rank for the MAX Mode C levels referred to in condition
(i), that is, all diagonal elements of these Dk are nonzero, and thus the
elements of the matrix from condition (i) are all nonzero.

(When R = S = 2, for example, at least 9 levels of Mode C are required to meet the
above conditions; when R = S = 3, one needs at least 36.)

Proof

We first establish some rank and nonzero properties of several matrices and some

equivalence relationships that follow easily when R = S. In particular, H and another
matrix we call ~k are shown to have the same properties as H (i.e., full rank and hence
no proportional rows, since R = S; no zero entries). This restricts the values possible
for a "cross-product ratio", which we then set up. This ratio makes explicit the re-
quirement of invariance in certain ratios of parameters that arises from the parallel
profiles property of the model. This invariance requirement restricts the possible trans-
formation matrices for A and B, and so allows us to first prove (3) and (4), and then 
(6) and (7).

For the case of R = S = 1, the theorem follows immediately. The P matrices equal
1, the D, H, and A matrices reduce to scalars, MAX = 1, and A and B are the unique
vectors determined (up to column rescaling) by the rank-1 decomposition of any k.
Hence, the remainder of the proof deals only with the case of R = S -- 2. []

Rank and linear relations between alternative representations

Equation (I) implies that k i s r ank R(=S) for the MAX or morelevel s of Mo
C with full rank Dk, and so all of the constituent matrices in (2) must be rank R (= 
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*
for these levels as well. The Dk and Dk may vary in rank across the other levels of Mode
C.

*
Since A and B have the same rank and size as A and B, they have full column rank,

*
and since A and A span the same rank-R space, as do B and B, nonsingular linear
transformations AT and aT must exist such that

*
A AT = A, and (9)

~ aT = B. (10)

*
Since A and B are full column rank, their Moore-Penrose generalized inverses

~+ and ~+ are full rank as well. Using this, we substitute (9) and (10) into (1), 
it with (2), and simplify to get two forms of a matrix that we call

AT ADk H BD k BT’= AI~ k I~ B*Dk ~ ilk. (11)

Clearly, i k must also be rank R for the MAX k with full rank Dk. The scalar equiva-
lents for any element of i k are

~rs,k a* * b*
= drr,k hrs dss,k, and (12)

R S

~rs,k = X Z
u=l w=l

a b batru duu,khuw dww,k tsw. (13)

These alternative forms of i k will be useful below.

Implications of all nonzero H

We have assumed H is all nonzero and now want to show that H is also all nonzero.
*

We start by supposing that any element of H is zero, say hrs = 0. Then (12) implies that
~rs,k = 0 for all k, and (13) implies that

[adll,k bdll,k](atrl hi1 btsl) + , ¯ ¯ ¯ , + [adll,k bdss,k](atrl hls btss)

+ [ad22,kbdll,k](atr2h21 btsl) + ,..., + [adRR,kbdss,k](atrRhRsbtss) = 0. (14)

The d-weights are nonzero by assumption for MAX levels of k. Suppose that some
t-h-t products are also nonzero. Squaring both sides of (14) and then combining terms
with equal d-weights gives a weighted sum of some elements of ~/k which is set equal
to zero for all MAX levels of k; this contradicts our linear independence assumption for
the MAX ~’k. Now suppose instead that all t-h-t products are zero. This implies that all
the atbt products are zero, since H is nonzero. Equation (14) involves all pairwise
combinations of elements from row r of AT and row s of BT (i.e., the outer product of
the two vectors). Hence, for all the products to be zero, either one or both rows must
be zero, but this would violate the full rank of the T matrices.

We arrive at a contradiction regardless of our assumption about the value of the

t-h-t products in (14). Thus we must conclude that all elements of H and hence k are
nonzero, just as for H. This has implications for the "cross-product ratio", which is
introduced below.
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The "Cross-Product Ratio’"

The "parallel profiles" characteristic of the model implies that certain ratios of
parameters remain constant across levels of Mode C. We now consider one such

*
invariant relationship, a ratio of two products of weighted H elements, and hence of
corresponding elements of ~k, which we call the "cross-product ratio". One way to
define it is

(hr’s dr’r’,k bdss,k)(hrs’ drr,k bds’s’,k) hr’s hrs,

(hrs drr,k bdss,k)(hr’s’ dr’r’,k ds’s’,k) hrs hr’s’

= qrr’ss’, (15)

wherer, r’ = 1,...,Randr#r’;s,s’ = 1,...,Sands;~s’;andkisanylevelof
Mode C for which the Theorem assumptions hold (and hence where A B *Dk and Dk are
full rank). We see that the ratio is independent of k because the d-weights cancel out.

Using the equivalence in (12), (15) can also be expressed 

~r’s,k ~rs’,k

~rs,k ~r’s’,k -- qrr’ss’,
(16)

where r, r’, s, and s’ are as defined above for (15); k is any level of Mode C for which
the Theorem assumptions hold; and q is a nonzero scalar value. Where the values of
either r and r’ or s and s’ are reversed, we have the equally valid reciprocal form of (16).
For example, q2112 ---- ql~IZ-

As defined, each cross-product ratio involves four elements of ~k (or H) that are
the intersection points of two rows r and r’ and two columns s and s’, indicated by the
subscripts of q. If the matrices are 2 x 2, only one ratio (or its reciprocal) exists;
otherwise, more can be set up. Each ratio has a unique value that remains constant for
the MAX values of k that meet the Theorem assumptions. For these values of k, the fact
that ~k is all nonzero means that q can never be zero, infinity or undefined. Except
when R = S = 2, it may sometimes happen that q = 1, but the requirement that ~k has
full rank restricts the number of such q. The mutual independence of the rows of ~k
implies that for any pair of rows r and r’, there exist at least two columns s and s’ such
that qrr’ss’ # 1. In other words, q # 1 occurs at least once for ratios constructed within
a given pair of rows, although one cannot predict which columns will be involved.
Equivalently, the column independence of the ~1, implies that for any columns s and s’,
there are at least two rows r and r’ such that qrr’ss’ # 1.

By substituting (13) into (16), we can derive an alternative representation of 
cross-product ratio q rr’ss’ -"

R R S S

u=l v=l w=l x=l

R R S S

u=l v=l w=l x=l

a a a b b,4 b~- b~.atru tr’v duu,k d,,~,khuwh~ d~,~,k u~,k ~s’w ~sx

a a a b b,4 b+ b#atru tr’v duu,k dw,khuwhvx dww,k Uxx,k tsw ts’x

(17)

We see that the numerator and denominator differ by the interchange of s and s’. Also,
the fixed subscripts in (17) correspond to the subscripts of q, with r and r’ denoting the
rows of AT and s and s’ denoting the rows of BT that are used in the alternative
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representation of the ratio. For example, q 1345 would involve elements from rows 1 and
3 of AT and rows 4 and 5 of BT.

Using the Cross-Product Ratio to find the form of AT and BT

The quadruple summation in (17) yields a sum of R2S2 terms in both the numerator
and denominator of the ratio, some of which are identical in both places (but may arise
in a different order) and some of which are not. The terms in the numerator that have
identical matches in the denominator (and vice versa) will be called "ratio-matched"
terms. In the remaining, unmatched terms, a given set of d-weights is multiplied by one
set of t and h values in the numerator and a different set of t and h values in the
denominator. The ratio-matched terms always involve at least one squared d-element
(i.e., u = v and/or w = x) while the nonmatched ones do not (i.e., u ;e v and w ~ 
The ratio-matched terms will play a key role in the proof.

All d-weights (i.e., d-element combinations) represented in (8) occur in both 
top and bottom of the ratio, some arising in only one term in each place, some in two
terms and others in four terms in both the numerator and denominator.

Example terms. We will now look at some specific terms in the numerator and
denominator of (17). First, consider terms with two squared d-elements. For example,
if uvwx = 1111 (u = v and w = x) we obtain atrl atr, 1 ad1~1,kh~21bd121,kbts,1 btsl. Each such
combination of two squared d-elements occurs only once in the numerator and once in
the denominator and is ratio matched (i.e., is associated with the same set of t and 
elements in both places). Next, consider terms with one squared d-element. For ex-
ample, when uvwx = 1112 (u = v, w ~ x) in the numerator, we have
atrl atr, 1 ad?l,khllh12bd11,kbd22,kbts,1 bts2 and when uvwx = 1121 (as before, except wx
values have been reversed), we obtain the same term except the bt-elements are now
bts,Ebtsl. (The reversal of order of the h elements has no effect and so will be ignored.)
The identical (ratio-matched) terms occur in the denominator but in the reverse order--
the first when uvwx = 1121 and the second when uvwx = 1112. Likewise, when uvwx
-- 1211 (u ~ v, w = x) or uvwx = 2111 in the numerator, we obtain two terms with the
same d-elements--adll,kad22,kbd121, k. These two uvwx combinations produce ratio-
matching terms in the denominator, and this time they arise in the same order (for the
same uvwx combinations) as in the numerator.

Finally, we consider terms with no squared d-elements. For example, the term
produced by uvwx = 1212 (u ;~ v and w ;~ x) has a d-weight of ad11,kad22,kbd11,kbd22,k¯

The three other "reversals" of uv and wx values--2112, 1221 and 2121--also yield
terms with this d-weight in the numerator and denominator. However, none of these
terms have identical tt-hh-tt products in both places, as can be verified by the reader.

All possible uvwx values in (17) produce terms with d-weight characteristics 
both the numerator and denominator that are similar to those above: either a unique
combination of two squared d-elements; or a combination of one squared and two
unsquared d-elements that is replicated in two terms; or a weight consisting of four
unsquared d-elements that occurs in four different terms. And, as noted earlier, any
term in the numerator containing at least one squared d-element has a "’ratio-matched"
or identical term in the denominator, and vice versa. This fact will be used to help
determine the form of AT and aT.

Factoring by d-weights. Suppose we now combine terms with the same d-weights.
Those with one squared d-element can be collected into pairs (since, as we saw above,
any such d-weight occurs in two terms) and those with no squared elements can be
collected into groups of four. Factoring out the common d-weights results in MAX
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terms in the numerator and in the denominator, with each of the d-weight combinations
given in (8) occurring once in each place.

We will call the sums of tt-hh-tt products associated with a given d-weight that
weight’s "t-h-t coefficient." For example, the t-h-t coefficient associated with the
d-weight ad121,kbd121,k is atrl atr,1h~21bts,l~tsl (where uvwx = 1111), and the one associ-

a 2 b b ¯ a a b , batedwith dll,k dll,k d22,k is ( trl tr,lhllhl2 t s 1 ts2 + atrlatr’lhllh12bts’2bts1) (from

uvwx = 1112 and 1121). Note that these t-h-t coefficients are identical in the numerator
and denominator of (17); hence these particular composite terms resulting from the
factoring by d-weights are also ratio-matched. In contrast, the t-h-t coefficient for
ad11,k ad22,kbd11,kbd22,k (UVWX = 1212, 2112, etc.) is a sum of four products, and, while
this d-weight occurs in both the top and bottom of (17), the t-h-t coefficients in the two
places differ.

Let us now rewrite (17) more compactly to emphasize the structure of the ratio
after factoring by d-weights. Suppose we reorder our terms so that all ratio-matched
terms occur before any nonmatched terms. We can then define [fi(dk)] as that nonlinear
function of d-elements corresponding to the i-th d-weight in the numerator and denom-
inator of (17) after factoring by d-weights and reordering. (Note that this can also 
defined as the i-th element of an equivalently reordered version of the 3’k vector given
in (8).) Let i or/3j represent the corresponding t-h-t coefficient (i.e., a sum ofone, two
or four tt-hh-tt products, as demonstrated above). Suppose also that M is the number
of terms that are ratio-matched (identical in the numerator and denominator) and N 
the number of unmatched terms. (Thus, M = RS(R + S)/2, N = RS(R - 1)(S - 1)/4 
M + N = MAX). Then (17) becomes

([fl(dk)]al + ... + [fM(dk)]aM) + [fM+l(dk)]aM+l + ... + [fM+N(dk)]aM+N

([fl(dk)]al "’ ’ + [f M(dk)]aM) + [f M+l(dk)]~l + "’ " + [f M+N(dk)]flN = q"
(18)

Relating (18) to (17), we see that the first M terms in (18) are ratio-matched, 
d-weights comprised of at least one squared d-element and a-weights comprised of
tt-hh-tt products from one or two terms in (17). The subsequent N terms have matching
d-weights (4 unsquared d-elements) but different t-h-t coefficients (the sum of tt-hh-tt
products from 4 terms). While the d-weights vary with k, the a- and/3-weights do not,
since they are composed of elements from fixed matrices.

When we rewrite (18) 

(q- 1)([fl(dk)]al + "’" + [fM(dk)]aM) + [fM+l(dk)](q/31 - aM+l)

+ "’" + [fM+N(dk)](q/~N -- aM+N) = 0, 

it becomes clear that to maintain our linear independence assumption the weights for
every [fi(dk)] must be zero (recall the conditions associated with (8), and that fi(dk) 
the i-th element of ~,k). If we choose ~k elements such that q # 1, we then must have
al,..o , aM = 0. AS will be demonstrated below, the zero property of these M
a-weights (i.e., the t-h-t coefficients for the ratio-matched terms) is sufficient to deter-
mine the form of AT and aT.

A-simplifying convention for AT and BT. The full rank property of AT and BT
implies that at least one nonzero element occurs in each row and column. Without loss
of generality, we can adopt the convention that the columns of A and B will be ordered
such that there are nonzero elements on the diagonals of AT and BT, which is always
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possible. This does not limit the proof, since the Theorem claims equivalence only up
to a possible permutation and rescaling of columns.

Filling in AT and aT. For any two rows i and j (i # j) of ilk, we choose two
columns s, s’ (s # s’) such that qijss’ # 1. This is always possible, since the rows of~k
are nonproportional (because ~k has full rank). We modify (17) for qijss’ (i.e., replacing
the fixed subscripts r and r’ with i and j, respectively) and use the zero property of
a-weights for certain ratio-matched terms to show that atij = 0. (To get atE1 = 0, for
example, we would work with ratio-matched terms from q lEss’ ~¢= 1, and in the equations
below, would substitute 1 for i and 2 for j, respectively.)

We begin by examining the term with two squared d-weights (and hence only one
tt-hh-tt product in the corresponding a) obtained from uvwx = iiss. As noted earlier,
such terms are ratio-matched, and so the a-weight is zero, giving us

atii atjihishis bts,s btss = 0, (20)

which implies that atji bts,s = 0 (since diagonal elements are nonzero by convention and
It is all nonzero by assumption).

Next we examine ratio-matched terms with one squared d-weight (and hence with
a sum of two tt-ht-tt products in the associated a). We consider the a derived from the
two terms where uvwx = iiss’ and uvwx -- iis’s. The tt-hh-tt product from uvwx = iiss’
immediately vanishes because atjibts, s = 0, leaving

atii atji his’ his bts’s’ btss = 0, (21)

which implies atji = 0. This holds for every i, j where i # j, and so AT is shown to be
diagonal.

We can similarly show that aT is also diagonal, except now it is the nonpropor-
tionality of the columns of ~k that allows us to find qrr’ij # 1 (i ~ j). Using the zero
property of the a-weights for the ratio-matched terms where uvwx = rrii, and uvwx =
rr’ii and r’rii, we find that btji = 0.

Consequences of diagonal T matrices: Proof of (3) and (4)

We have shown AT and BT to be diagonal matrices when we initially assume that

the order of columns in A and B is such that no diagonal elements of AT or aT are zero.
To determine the form of the transformation matrices when all permutations of column

order of A and B are allowed (hence allowing the nonzero elements of the T matrices

to occur off the diagonal), we define a diagonal matrix AA and a permutation matrix Ap
(either or both of which might be identity matrices) such that

AT = Ap AA. (22)

Similarly, for aT we define a diagonal matrix aA and a permutation matrix ap such that

aT = Bp B&. (23)

Substituting (22) and (23) into (9) and (10), respectively, 

*
A Ap AA = A, and

B Bp BA = B,

which proves (3) and (4) in the Theorem.

(24)

(25)
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*
Relationship of H to H: Proof of (5)

Substituting (22) and (23) into (11), 

Ap AA ADk H BDk BA Bp, A* B*= Dk I~ Dk. (26)

Now we choose some level with full rank Dk, say k = 1. Wc prc- and post-multiply
*
H by the identity matrices (Ap Ap,) and (Bp Bp,), respectively, and rewrite 
somewhat, commuting diagonal matrices in the process, to obtain

H AD~-I(A P, A*= D~ Ap)AA-1 Ap, ~I Bp 8A-I(B P, 81~ 1 Bp)BD(1" (27)

Note that AA-1 and BA-1 exist because AA and BA are nonsingular as defined. The

expressions in parentheses are versions of A~1 and B~)1 in which diagonals have been
reordered if necessary to match the ordering in ADl and BDl , respectively.

Let us now define the diagonal matrices

A~ AD~-I Ap, A* Ap~ D 1 and

B~ Bp, B* ap BD-1--= D1 ~ , (28)

and rewrite (27) 

*
H = (A~ AA-1 Ap,)H(B P BA-~ 1~). (29)

Although the definition of A~ and B~ is somewhat arbitrary (i.e., any level with full
rank Dk can be chosen), the form of (29) is not. Hence (5) is proven. []

D-weight relationships: Proof of (6) and (7)

A scalar indeterminacy. There is a trivial scalar indeterminacy basic to the model.
Since symmetry in the parameters on the left versus right of H is not required, a scalar
can be applied to any matrix in (1), so long as its reciprocal is applied to some other
matrix in the product. Of course, the same scalar must be applied through all slices for
A, B and H, since these matrices are fixed for all k. Thus, the scaling indeterminacy for
these matrices can be eliminated by adopting conventions such as unit length factors
and unit H diagonals, for example, with compensatory scaling of AC and/or BC
(and hence uniform rescaling of all the ADk and/or BDk matrices) as needed. However,
there is an additional scalar indeterminacy of the two Dk matrices at any given value of
k. A distinct scalar multiplication of ADk can be done at any k, provided BDk at the
same level is multiplied by the reciprocal scalar. We will use zk and z~-l in the following
section to represent the scalar indeterminacy primarily with respect to its possible
effect on the relationships between ADk and BDk weights.

After substituting (29) into (26) and simplifying, we 

Ap ADk A~ Ap, h Bp ~,~ BDk ap,= A*Dk h B*Dk. (30)

Now we define

ADk __~ Ap ADk A~ Ap, and BI) k ~ Bp B~ BDk Bp,, (31)

and (30) becomes
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A]~ k h BDk A* B*= Dk I~ Dk. (32)

The Dk matrices are just rescaled versions of the Dk with diagonals permuted to match
*

the ordering in the Dk, and so retain the rank properties of the Dk.
Equation (32) is equivalent to RS scalar equations of the form

* a* * b*aduu,k huw bdww,k = duu,k huw dww,k foru = 1,...,Randw= 1,...,S,

*
which, because H is all nonzero, can be rewritten as

a* b*
aduu,k bdww,k = duu,k dww,k.

(33)

(34)

The RS equations implied by (34) can be written explicitly as an equality of two outer

products. If we let b* B * B *ek = diag (Dk) (i.e., row ~ of C, the Mode C weight or "load-
.

ing" matrix applied to B), let b~k = diag (BI)~) (i.e., the vector with elements

bdll,k . .. bduu,k , . bdRR,k), and define aek and a~k in parallel fashion, then we can
rewrite (34) 

It is evident from (35) that

a~k b~ = aCk (35)

*
a~ k = Zk aCk, and

b~k Z~-1 b*= Ck,

provided all the c vectors are nonzero. Thus whenever Xk # O,

A*Al~k = Zk Dk, and

(36)

BI)k = z~"1 BI~k. (37)

*
To find the relationship between the Dk and Dk, we now substitute from (37) into

(31) and rearrange, obtaining
ADk = Zk Ap, AI~k Ap A~-I and

- Bp, B]~k Bp B~-I (38)BDk = Zk 1 .

This proves (6) and (7) for X~ # 0, and the proof of Theorem 1 is complete. []

PT2 Theorem 2 (Symmetrically Weighted Case)

Consider the special case of PARATUCK2 in which ADk = BDk for all k. Here we
will denote the weight matrix simply as Dk. For this case, rotational uniqueness does
not automatically follow from Theorem 1, because the definition of "adequate varia-
tion" used there is based on the assumption of two independently varying Dk. While we
can use many of the same steps as in Theorem l, a separate argument will bc required,
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and this is provided below. (Because it is an independent case, we will start at (1) again
for the equation sequence numbers.)

Theorem

Suppose there exists an I by J by K three-way array X with the following structure

Xk = A Dk H Dk B’, (1)

where A is I × R, B is J × R, H is R × R, and the Dk are R × R diagonal. Now suppose
there is an alternative representation of X with matrices of the same size and structural
form

* * * * *
Xk = A Dk H Dk B’. (2)

We show that, under the assumptions given below, the tWO representations arc neces-
sarily related as follows:

*
A(P A&) = (3)

*
B(P ~A) = B, (4)

*
(~ AA-1 P’)H(P Ba-1 ~,) (5)

and that for any Xk -# 0

*
(Zk P’)D~(P ~-1) = (6)

where the & and ~ matrices are diagonal, P is a permutation matrix, and zk = -+ 1. In
other words, the representation in this form of any such X is unique up to trivial
permutation and/or rescaling of columns.

Assumptions. We assume that A, B and H have rank R, that H has no zero ele-
ments, and that there is "adequate variation in the dimension weights".

Adequate variation in dimension weights. Define MAXS = R(R + 1)(R + 2)(R 
3)/24, the maximum number of unique d-weight combinations that can be composed
using four diagonal elements (with possible repetition) from k. Let us also define a
vector "rk whose MAXS components are so constructed. The elements of ,rk are as
follows:

d4 . . d4 , 3 3 d 2 d2
ll,k, ¯ , RR,k dll,k d22,k, ¯ ¯ ¯ , d(R-l)(R-l),k dRR,k, 11,k 22,k, ¯ ¯ ° ,

d(2R_ 1)(R_ 1),k E  dE
2

RR,k, ll,k d22,k d33,k, ̄  ¯ ¯ , d(R-2)(R-2),k d(R-l)(R-l),k 

dll,k d22,k d33,k d44,k .... , d(R-3)(R-3),k d(R-2)(R-2),k d(R-1)(R-1),k (7)

The subscript notation "rr,k" is the same as was used in Theorem 1. Obviously, some
elements do not occur if R -< 3 (e.g., ones with four first-power d-weights).

We say the factor weight variation across k is "adequate" to uniquely determine
the axis orientation of the solution, given the following two conditions:

i. There are at least MAXS distinct k for which the associated xk are linearly
independent (so that the square matrix formed by these vectors has rank
MAXS) and



146 PSYCHOMETRIKA

For the MAXS Mode C levels in condition (i), none of the dimension weights is zeib
(i.e., all diagonal elements of the k are n onzero, and hence the components of t he
MAXS a-k are all nonzero).

(When R = 2, for example, at least 5 levels of Mode C are required to meet the above
conditions; when R = 3 or R = 4, one needs 15 or 35, respectively.)

Proof

The argument proceeds as for Theorem I except that adrr,k = bdrr,k = drr,k and
* b* *ad = replaced_._ with and ad bdrr,k drr,k = drr,k, and so ADk and BDk are., D.~, and are

replaced with d in all the equations, and the same for the Dk and d. Also, wherever the
linear independence of the MAX ~/k was invoked, the linear independence of the MAXS
,r k is now used. Necessary equations are given below, but the reader is sometimes left
to fill in details of their derivation by referring to corresponding sections in the Theorem
1 proof.

As in Theorem 1, the case of R = l follows immediately, and so the argument
focuses on cases where R -> 2. []

Rank, linear transformation, and nonzero parameter relationships
* *

Using the same reasoning as for Theorem 1, it is clear that A,B and H are rank R,

and the Dk are rank R for at least MAXS levels of Mode C. Furthermore, nonsingular
transformations AT and BT exist for A and B, respectively, such that

*
A AT = Aand (8)

~ BT = B. (9)

As before, we can now derive two equivalent representations for ~k:

AT Dk H Dk BT’ = Dk H Dk = ~k. (10)

Again it is evident that ~k is rank R for at least MAXS k. The corresponding scalar
equations arc

* * *
~rs,k = drr,k hrs dss,k and (11)

R R

 rs,k -- X X
u=l w=l

a btru duu,khuwdww,k tsw, (12)

for r and s = 1,..., R. We can also show that an all nonzero H implies an all nonzero

H and ~k, using the same argument as in Theorem 1.

The "Cross-Product Ratio"
As before, we consider a ratio of four elements from ~k (and equivalently, from

H) which remains constant for the (at least MAXS) levels of k where the theorem
assumptions hold. As in Theorem 1, it is defined as

~r’s,k ~rs’,k

~rs,k ~r’s’,k "--- qrr’ss’
(13)
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where r, r’, s and s’ = 1,..., R; r ;~ r’; s ;~ s’; and k is any level of Mode C for which
the theorem assumptions hold. All properties of the ratio described in Theorem 1 also
hold here.

After substituting (12) into (13), the alternative form of the symmetrically-weighted
ratio is

R R R R

u=l v=l w=l x=l

a a b btru tr’vduu,kdw,khuwhvxdww,kdxx,k ts’w tsx

R R R R

u=l v=l w=l x=l

atru atr’vduu,k dw,khuw hvx dww,k dxx,k btsw bts,x

= qrr’ss’ ¯ (14)

Using the Cross-Product Ratio to find the form of AT and BT

Expanding (14), we obtain a sum of 4 t erms in t he numerator and i n t he denom-
inator of the ratio, some of which are identical in both places--ratio-matched--and
some of which are not. In contrast to Theorem 1, here the d-weights do not always
reflect the difference. Terms with either a fourth-power d-element or a cubed d-element
always are ratio-matched, and those with four different d’s never are. However, terms
with one or two squared d’s (i.e., when u -- w and/or v = x or when u = x and/or v --
w) are sometimes ratio-matched but more often are not.

Example terms. The terms differ from those in Theorem 1 because now no distinc-
tion is made between the d’s arising from uv and those from wx, and so we a~ain examine
some specific ones. For example, uvwx = 1111 produces dPl,katrlatr, lh~lbts,lbtsl in
the numerator and denominator, and no other uvwx gives rise to the same d-weight. In
contrast, uvwx = 2111, 1211, 1121, and 1112 all yield terms containing d~1,kd22,k.
(Recall that two different d-weights resulted from these combinations in Theorem 1.)
The terms are identical in the numerator and denominator, but as before, the last two
occur in reverse order (i.e., the same one is derived from uvwx = 1121 in the top and
uvwx = 1112 in the bottom, and vice versa).

Now consider the six permutations of 1122. The six corresponding terms all con-
2 2tain d1Lkd22,k, and the associated tt-hh-tt products are ratio-matched for uvwx = 1122

and 2211, but not for uvwx = 1212, 1221, 2112 and 2121. Similarly, of the twelve terms
with a d-weight of d121,kd22,kd33,k (from the permutations of 1123, assuming R >_ 3), only
four are ratio-matched (for uvwx = 1123, 1132, 2311 and 3211). And, when R _> 4, the
d-weight d11,kd22,kd33,kd44,k occurs in 24 terms in the top and bottom of the ratio (due
to the 24 permutations of 1234) but none with the same tt-hh-tt product in both places.

Factoring by d-weights. All uvwx values in the top and bottom of (14) give rise 
terms with similar d-weights to those described above, either (i) a d-element raised 
the fourth power, that occurs in one term, (ii) two d-elements, one of which is cubed,
that repeats in four terms, (iii) two squared d’s, that occurs in six terms, (iv) three 
one of which is squared, that repeats in 12 terms, or (v) four d’s, that occurs in 24 terms.
Only terms in the numerator whose d-weight contains a third- or fourth-power d-ele-
ment can always be matched with identical ones in the denominator.

Factoring by d-weights, we combine four terms for each di~djj combination, six for
2 2each dii djj, twelve for each one containing one squared d, and 24 for each combination

of four different d’s. This reduces the ratio to one with MAXS terms in the numerator
and in the denominator, with all of the d-weight combinations in (7) represented. Now
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only terms with d-weights of the form di~ or di~dji are ratio-matched, the t-h-t coeffi-
cients of all the others differ between the top and bottom of the ratio. Note that the
ratio-matched terms have relatively simple t-h-t coefficients---either one tt-hh-tt prod-
uct or a sum of four--which is fortunate, since they play a key role in the following
section.

We now reorder so that ratio-matched terms occur first, and rewrite the (factored)
ratio to clarify its structure, as we did in Theorem 1. We define [fi(dk)] as reordered

component i of ’1" k given in (7), and let i or f lj r epresent the corresponding sum of
tt-hh-tt products. Using M = R2 as the number of terms that match in the numerator
and denominator and N = R(R - 1)(R2 ÷ 7R - 6)/24 as the number of unmatched terms
(i.e., M ÷ N -- MAXS), (14) becomes

(q- 1)([fl(dk)]al + "’" + [fM(dk)]aM) + [fM+l(dk)](qfll 

÷ "’" ÷ [fM+N(dk)](qflN -- aM+N) = O. 

Reasoning as in Theorem 1, in order for (15) to fulfill our linear independence assump-
tions with q ~ 1, we must have al, ¯ ¯ ¯, aM = 0; this allows us to find the form of the
transformation matrices.

As in Theorem I, we will work with q ~ I to determine the values in the trans-
formation matrices. We again adopt a temporary convention that the diagonals of AT
and aT are nonzero, and invoke the zero property of the a-weights (t-h-t coefficients)
for ratio-matched terms. This time however, we fix three subscripts when selecting the
ratio.

Filling in AT and BT. First we choose qijsi ~ 1 (i ~ j, s ~ i), which always exists
since rows of~k are nonproportional. We replace the fixed subscripts r, r’ and s’ in (14)
with i, j, and i, respectively. Looking at the (ratio-matched) terms with d-weights
of di~,k , 3 3dii,kdss,k, can set the corresponding a-weights to zero. Fromdii,kdjj,k and we
the first term (where uvwx = iiii), we get

a~ a~ h2b~qi Lji "’ii -ii btsi

which implies

= 0, (16)

atjibtsi = 0. (17)

The permutations of uvwx = iiij give us the four tt-hh-tt products that comprise the a
of the second term. Two of these vanish upon substitution of (17), leaving

atii atjihiihij btii btsj ÷ atii atjjhiihji btii btsi = 0. (18)

From this, we can conclude that atji = 0 implies btsi = 0.
Similarly, substituting (17) into the a derived from the permutations of iiis elimi-

nates two of the tt-hh-tt products, leaving

atii atjihiihis btii btss + atii atjshiihsi btii btsi = 0. (19)

From this, we can conclude that btsi = 0 implies atji = 0. Combining these implications
with (17), we conclude that atji = 0. Since this is true for every i, j (i # j), AT 
diagonal.

A parallel procedure shows BT to be diagonal as well. As in Theorem 1, we use the
nonproportionality of the columns of ~k to choose qdij # 1 (r # i, i # j), and find that
btji = 0 for every i, j (i ~ j).
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* *
Relationship of A to A and B to B

Just as in Theorem 1, we now allow for nonzero elements off the diagonals, and
hence a more general result, by defining a diagonal matrix AA and a permutation matrix
Ap (either or both of which might be identity matrices) such that

AT = Ap AA. (20)

Similarly, for BT we define a diagonal matrix BA and a permutation matrix Bp such that

BT = BP BA. (21)

Proof of (3) through (6)

Proof of(3) and (4). Before we show that Ap = Bp = p, as we must to prove (3)
and (4), we first obtain results about H and the k matrices t hat do not r equire equality
of Ap and ap. We proceed just as in Theorem l, Equations (26) through (38) (replacing

,
ADk and BDk with Ok, of course), eventually obtaining two expressions for Ok:

* A~ Ap, Bp B~ ap,,Dk = Z~-1 Ap Dk = Zk Dk (22)

where zk is a scalar multiplier expressing the left-right scalar indeterminacy, as before
(see (38) in Theorem 

Using the right hand equality in (22), we substitute appropriately from (28) 
Theorem l, commute diagonal matrices to simplify, and obtain

DkD~-1 = z~ Ap, Bp Dk D~-1 Bp, Ap. (23)

Showing that zk = +-l. Suppose the permutation in (23) does not change the
position of the u-th diagonal. Then for such an element we can write duu,kdu~l,1 =

2 -1
= +1.zk duu,kduu,1, which implies zk

Now suppose the permutation changes the positions of all the diagonal elements.
Then the element in position u is moved to position v, the one in v is moved to w, and
so on, with some element being moved into location u. Applying (23), this chain 
relocations results in a set of equations

-1 2 -1
duu,kduu,l = Zkdvv,kdvv,l,

dvv,k d~-vl,1
2 -1

= Zkdww,kdww, l,

2 -1
= Zkduu,kduu, l.

Substituting backwards from the last equation to the first gives duu,kd~ulA =
2 2 2 -1(zk zk , = +-- I... zk)duu,kduuA which implies zk in this case as well.

Showing that Ap = Bp. Assuming Ap # Bp, some diagonal elements of(Dk D~-1)
will change position on the right hand side of (23). Suppose the diagonal in position 
is permuted to position v. With zl~ = I, from (23) we have duu kd~-~i = dvv kd~vIi which
implies that for all MAXS values for k duu,k = Y dvv,k, wher~ y ---’ duuAd~lA. ~ut this
would cause some of the ,r k to violate the linear independence required for "adequate
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variation." Thus we must conclude instead that no elements are permuted, and so
Ap = ap = p.

We now rewrite (20) and (21) 

AT = p A& and (24)

BT = P BA. (25)

Substituting into (8) and (9), respectively, then gives

.
AP AA = A and (26)

*
B P aA = B, (27)

which proves (3) and (4) in the Theorem. []

Proof of(5). By substituting (24) and (25) into (10), we 

* * *p A& Dk It Dk B~ p, = Dk H Ok. (28)

Then, after choosing a level with full rank Dk, say k = 1, pre- and post-multiplying
,
H by (PP’) and rearranging as before, we get

* * *
H = D~-I(P ’ DI p)A~-I p, H P BA-I(P’ D1 P)D~-l. (29)

Now if we define a single permuted diagonal matrix

*
~ -= D~-~ P’ D1 P, (30)

we can rewrite (29) 

*
H = (~ AA-I P’)H(P -1 ~) (31)

Thus (5) is proven. []

Proof of (6). Substituting (31) into (28) and simplifying, we now obtain

* * * *
P Dk ~, P’ H P 2i Dk P’ = Dk H Dk.

Defining

allows us to rewrite (32) 

(32)

* * * *

l)k H l)k = Dk H Dk, (34)

from which we derive the simplified scalar equivalent
*

duu,k dww,k = duu,k dww,k for u, w = 1 ..... R. (35)

*
From cases where u = w, we get 0uu,k = --+duu,k and from cases where u # w, we get

* 1
~luu,k du~,k " -1= dww,k dww,k for u, w = 1 .... , R; hence

*
l~k = Zk Dk (36)

where Zk = --+ 1. After equating (36) and (33) and rearranging terms, we obtain

l)k ------ P Dk ~’ P’ (33)
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Dk = Zk P’ Dk P ~-1

This establishes (6), and the proof is complete.

151

(37)

Discussion

Theorem 1 establishes that the orientation of PARATUCK2 axes is sometimes
uniquely determined. That is, the factor pattern (or stimulus projection) matrices A and
B are determined up to rearrangement of column order and/or proportional increase/
decrease (or reflection) of all the elements in a column. Such alterations do not gener-
ally change the interpretation of a factor or dimension. Some simple conventions de-
termining order of factors and scaling of modes can be adopted to remove the remaining
indeterminacy, in which case the model is fully identifiable~given that the assumptions
are fulfilled and the data variation is "adequate." Theorem 2 demonstrates that the
argument is easily adapted to handle models with equal ADk and BDk. Together, these
theorems prove the rotational uniqueness for su~ciently large K of several psycho-
metrically interesting special cases such as PARAFAC2 or oblique INDSCAL, and
three-way versions of DEDICOM.

Plausibility of assumptions

Assumption 1. Full rank assumptions: These assumptions are standard with mul-
tilinear models, and easy to fulfill.

Assumption 2. All nonzero H assumption: For some types of data it is unlikely that
any factor interactions would be exactly zero, and so the assumption is plausible. For
other types of data it is probably too restrictive (and for skew-symmetric DEDICOM,
the model requires zeroes on the diagonal of H). The all nonzero assumption is useful
for the ratio-based argument used here, but the actual effects of zeros in H is not well
understood. We have both empirical and mathematical results which show partial non-
uniqueness of 2 × 2 PT2 with exactly one zero. However, in most cases that we have
examined, zeros in H do not interfere with uniqueness. For example, we have empirical
results that suggest uniqueness still holds in skew-symmetric DEDICOM, 3 × 3 non-
symmetric PT2 with one zero, 3 x 3 PARAFAC2 with four zeroes, and symmetrically
weighted PT2 or PARAFAC2 with diagonal H. These results provide motivation to
develop further proofs in which the all nonzero H assumption is relaxed.

Assumption 3. The "adequate variation" assumption: When the Dk elements are
drawn randomly from a continuous distribution, violations of "adequate variation"
should arise "with probability zero". However, there are situations (e.g., with certain
externally specified variations in the Dk) where more relaxed requirements would be
useful, so alternatives should be investigated.

The definition of "adequate variation" may seem surprisingly complicated. The
complexity arises partly because of the PT2 model itself and partly because of the
cross-product rule. The model multiplies elements from two different Dk (or in symmetri-
cally weighted cases, from the same Dk twice), while the cross-product ratio multiplies two
entities derived from the model, thus combining four d-weights. Hence, the linear inde-
pendence assumptions are stated in terms of all possible product combinations of four
d-weights, two from ADk and two from BDk (or all from the same k i n Theorem 2).
Simpler assumptions, such as linear independence of the d variations, would block most
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but not all conditions that would allow nonuniqueness; the ones we use here are the only
ones we have found so far that block all of the most subtle conditions.

In the current Theorems, "adequate variation" also requires that no dimensions
have zero weights on MAX (or MAXS) of the levels showing independent variation.
Such a restriction is not necessary for uniqueness. To drop it, however, would require
adding another lengthy section to deal with various possible combinations of less than
MAX full-rank levels and levels for which the Dk matrices show rank deficiencies of
various kinds. This is better handled by a separate theorem and argument. We should
point out, however, that the full rank case is the most difficult one, where the data at
all levels are mixtures of all factors. The number of levels needed for uniqueness would
generally be smaller when some factors have zero d-weights for some levels. Indeed,
Harshman (letter to J. D. Carroll, 1972) pointed out that the PARAFAC2 dimensions
were uniquely defined whenever there was, for each dimension, some level on which
only that dimension had a nonzero weight. Thus, in such a case, only R levels of Mode
C would be needed for a unique solution. Carroll and Wish (1974) subsequently refined
this by noting that while A and B would be unique with R levels, H would be nonunique
unless there were an (R + 1)-th level on which all dimensions had nonzero weights.

Assumption 4. The R = S assumption. This assumption is natural in a wide range
of cases, such as PARAFAC2, but is sometimes undesirable. Recall that the
PARATUCK2 model (like Tucker’s T2 and T3) is more general, and allows a different
number of columns for A versus B. In empirical tests, we have (as yet) found no counter
examples to uniqueness when R = 3 with S = 2 and even when R = 5 with S = 2 (for
data generated with random elements in all matrices); hence, we suspect that in at least
some cases uniqueness may hold when R > S. However, ten Berge (p.c., 1995) has
shown that a partial nonuniqueness will occur when two or more rows of H are pro-
portional. (When R -- S, such proportionality is ruled out by the full column rank of H,
but when R > S it must be specifically ruled out by an additional assumption.) In itself,
this is a modest assumption to add. But we have not yet been able to show that this

*
would imply that H will also have no proportional rows, as required for the current form
of the argument. Further study of the R > S case would seem worthwhile.

Theoretical and Practical Issues

Number of "occasions" (levels of Mode C) needed for uniqueness. We do not
necessarily consider MAX and MAXS to be the minimum number of levels for which
uniqueness of the PT2 representation holds. Although we have not tried in these proofs
to mathematically determine the minimum number, we have found empirically that in
2 x 2 cases with positivity constraints on the Mode C weights, the PARAFAC2 solution
appears to be unique with as few as three levels of Mode C and the nonsymmetrically
weighted PT2 model with six. Ten Berge and Kiers (1996), present a proof of unique-
ness for PARAFAC2 when R = 2 which determines exactly the minimum number of
levels needed for uniqueness in various conditions; it confirms that three is enough
when Mode C positivity constraints are imposed, and shows that four is enough "with
probability one" for real data. In general, the minimum number of levels needed for
uniqueness of particular models at different dimensionalities is an issue that deserves
further study, since as R increases our MAXS and particularly MAX values quickly
become rather large. (Where R = S = 2, for example, MAX = 9 and where
R = S = 4, MAX = I00.)
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Modelfitting. Widespread application of PARATUCK models may require further
advances in model-fitting algorithms. When fit by alternating least squares, these mod-
els seem particularly subject to convergence difficulties (resembling the "swamps"
described by Mitchell & Burdick, 1994; and sharing some characteristics of the "de-
generacies" described in Kruskal, Harshman, & Lundy, 1989; Harshman & DeSarbo,
1984, etc.). In general, these are not local optima, and most of them are probably not
true "degeneracies" (although degeneracies can also cause problems when the data
contain certain kinds of systematic deviation from the model being fit). Many trials from
different starting positions are sometimes needed to find a path to the optimum without
severe convergence bottlenecks. It will be important to look for ways of avoiding these
obstacles and preventing degeneracies when fitting PT2 and related models to data.

Changing interactions. One important l~ind of generalization that has not been
proven unique by this proof is the case of proportional profiles when the central inter-
action matrix undergoes some (constrained) changes from one level of k to another.
Consideration of one such case will be a natural consequence of developing the
"PARATUCK3" model. In the PT3 model, H is replaced by ~?=1 gCkt Gt, a weighted
sum of frontal slabs from a three way array _G. In Tucker’s terminology, _G would be the
T3 "core matrix." The slab weights for level k are given in the k-th row of a K by T
Mode C weight matrix G C. It would seem likely that with few enough slabs in the core,
PT3 could have a unique solution.

There is, however, a different kind of model which has already been shown to have
uniqueness despite some variation in the matrix of angles among factors or dimensions.
A separate proof (Harshman, 1992)~using an indirect application of a theorem from
Kruskal’s (1976, 1977) analysis of PARAFAC/CANDECOMP uniqueness--shows
uniqueness of axes for a three-mode model based on classical equations for hierarchical
factor analysis; this model allows restricted changes in interactions or angles among
factors when the higher order factors change their strength of influence across occa-
sions. The nature of this model, and its basis for uniqueness, is somewhat different from
any of the three-way factor models considered here.

Exploring Tucker-type models. Despite the limitations of this proof, it suggests
some possibilities that have a certain appeal to the psychometric imagination. It should
prove most interesting to investigate empirical domains where aspects of Tucker gen-
erality might be needed, to determine what patterns of factor interaction are discovered
when one does not need to rely on more traditional rotation methods.
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