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Abstract
When model changes are guided by post hoc assessment of 

the observed improvements in prediction or fit (e. g. , in stepwise 
regression), it is usually impossible to obtain p-values for these 
improvements by conventional analytical methods. We describe a 
computer-intensive alternative that accurately estimates these p-
values by using a modified randomization / permutation test 
procedure that empirically determines the appropriate null 
distributions. To demonstrate the method, we use it to get valid p-
values for step improvements found during standard stepwise 
multiple regression. Our method corrects for bias caused by the 
increased ‘capitalization on chance’ intrinsic to post hoc variable 
selection; it does this by introducing an equivalent post hoc 
selection step into the process generating the null-hypothesis 
values. The method also corrects for an "inconsistency" bias by 
eliminating or "pruning out“ permuted cases that are inconsistent 
with prior step results; without such pruning, the method would 
underestimate significance except on the first step. In a Monte 
Carlo sample of one million cases, the p-values estimated for fit 
improvements during a three-step stepwise multiple regression did 
not show a statistically detectable bias at any step. Potential 
applications include significance tests for more complex sequential 
methods, stepwise canonical correlation / MANOVA, and 
discriminant analysis.



1. The Motivation: a need to choose

When faced with too many alternatives ( e.g.,  too many potential predictors 
for a multiple regression model), one sometimes starts with the simplest model 
and then incrementally adds model improvements, each time choosing the ‘best’
addition from among a set of remaining possibilities.

Which change is ‘best’ is typically determined by post hoc comparison of the 
relative statistical effects of the possible alternatives.  Examples of this include 
adding predictors in multiple regression by forward selection, or adding group 
contrasts during post hoc multiple comparisons of group means.

Example: Rating treatments for back pain
In 2002 we collaborated with Drs. L. Swartzman, J. Burkell, and others at UWO in 
an investigation of peoples’ perceptions of “alternative” vs. “conventional” medical 
treatments (hypothetically, for chronic back pain). 

In the data reported here, 89 participants rated each back treatment on 20 
objective properties (e.g., ‘Painful’; ‘Very well researched’; ‘Has serious side 
effects’) and also on 9 evaluative scales (e.g., ‘A good approach’; ‘Makes me 
uneasy to even think about it’; ‘A really dumb thing to try’, etc.).  

One approach to studying the objective-subjective connections is to use multiple 
regression to predict evaluative ratings for a given treatment from the objective
ratings of that treatment. 

Here are the 20 objective properties rated on 9 point scales 
(the potential predictors):

With 20 potential predictors and only 89 raters, we could not simultaneously enter 
all into a regression model. Instead, we entered them one at a time, using a 
forward selection procedure, and evaluated the p-value of the improvement in R 
at each step (until p>.5).

11. Very dangerous
12. Under the control of the person treated
13. Treats the mind
14. Conventional medical treatment
15. Very harsh
16. Holistic
17. Foreign to the body
18. Affects the whole body
19. We completely understand how this    

treatment/management approach works
20. Very “penetrating”

1. Requires effort from the person treated
2. Painful
3. Very invasive
4. Very effective
5. Very well researched
6. Requires effort from the health care 

provider
7. Natural approach
8. Has serious side effects
9. Treats the body

10. Disruptive to one’s daily routine



2. The problem:   choice introduces bias

Example 1 (‘parametric’ p-value estimates in a 5 step procedure):

These histograms show the relative frequency of p-values of different sizes that 
were found by a standard F-test when applied in a forward selection Multiple 
Regression procedure. 

100,000 simulated cases were analyzed. Each consisted of a random y and 5 
random x vectors (vector elements were drawn from N(0,1) then centered). At 
each step the vector making the best improvement was entered into the model, 
until all 5 vectors were entered (Step 5).

At Step 1, unrealistically low p-values were reported.  At successive steps, the 
distribution shifted toward larger values. An interplay of positive and negative 
bias in the middle step suppressed both large and small p’s. Since all values  
were random, an unbiased estimate of p-values should have a uniform 
distribution. 

Prior work
We are, of course, not the first to point out that bias is introduced by model 
selection.  The invalidity of standard p-value computations for stepwise 
regression is well known. In the broader context of model selection generally, 
recent authors such as Hjorth (1994) have discussed the problem extensively, 
and provided alternative strategies, but not a way to obtain correct p-values.

However, in 1995, Grechanovsky & Pinsker published an algebraic derivation of 
valid p-values for the F-test in forward selection multiple regression. Their 
treatment is mathematically sophisticated and uses the standard distributional 
assumptions. The method described here grows out of a more general theory of 
bias, described below, and an empirical approach that is approximate, 
computationally intensive, but at the same time nonparametric and very flexible –
potentially adaptable to many different kinds/applications of model selection. 
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3. Analyzing the Bias:   two shifting aspects
The same shifting bias is seen when p-values are estimated ‘nonparametrically’
by a permutation test. In this case the data consist of a random y and only 3 
random x vectors, so there are only three potential predictors in the selection set. 

The bias shifts because of a changing relative contribution of two components:  
(i) the advantage of getting the best current option, and (ii)  the disadvantage of 
not getting the even better alternatives chosen at prior steps. 

Example 2 (‘nonparametric’ p-values, 3 regression steps):

Case 2A: Without any bias correction, we see a shifting bias similar to Case 1:

Case 2B: Below, we remove the current-choice advantage by incorporating 
the same choice advantage into the generation of null set values. No bias is left 
on Step 1, but the later steps still show an increasing prior choice disadvantage:

Case 2C: In contrast, we below remove instead the prior-choice disadvantage 
by applying “null set pruning” to eliminate from the null distribution spurious large 
prediction increments that are larger than the best ones found at earlier stages:

Case 2D: By using both corrections when generating null set values, unbiased p-
values are obtained at all steps: 
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4. Algorithm:   picking and pruning

Do “Consistency Check” to be sure the size of R increment produced by entering the 
current permuted predictor is not larger than the increment of the best predictor on a 
prior step.* If the consistency check is passed, enter the R value (or, equivalently, the 
R increment) into the set of values that will make up the null distribution for the 
current step.

If the required number of null values has been generated (e.g., 1000), compare them 
to the observed (non randomized) R value or R increment.  Compute the p-value (the 
proportion of null increment values that are larger than or equal to the observed-data 
increment) and save it. 

If this is not the last step, advance to the next step.

* if 5000 consecutive null r’s have to be eliminated, the dataset is 
abandoned

Start procedure at Step 1:

Choose one predictor variable (x) from the set of potential predictors. Choose the one most 
correlated with to-be-predicted variable (y), and use it to form the initial regression model.  

Obtain a p-value for the increment in correlation observed at this step. Do this by 
determining the proportion of null increment values that are larger than or equal to the 
observed increment value. The set of null values (e.g., 1000 values) is computer generated.

To generate each value in the null distribution for this step, create a simulated instance of 
the null relationship and find the resulting value of the R increment.

To simulate the null relationship, randomize the row location of the elements in those x 
variables not yet in the model. Do this by subjecting these x vectors to a synchronous 
random row permutation.. That is, use the same row permutation for all potential 
predictors in order to preserve intercorrelations among these variables.

Then choose the best predictor from among the row-permuted x and enter it into the 
model;  this incorporates the current-choice advantage into the values used for the null 
distribution.



5. Summary of the Method: four nested loops

The procedure can be roughly summarized as a series of nested loops: 

REPLICATION LOOP – generate random data (1 million sets, X=20x10, y=20x1)

REGRESSION LOOP – do 3 steps

STEP LOOP – get p-value for the step

PERMUTATION LOOP – get null r distribution (1000 values) 
from which the p-value is computed

CONSISTENCY CHECK LOOP – eliminate “inconsistent” null r’s
this is done for all but the first step

If 5000 consecutive null r’s have to be eliminated, the dataset is abandoned.

6. Testing the method:   Monte Carlo simulation
A series of Monte Carlo tests were performed, evaluating the distribution of p-
values obtained by different methods when applied to random data (i.e., in the 
null situation). The resulting distributions were examined/tested for closeness to 
a uniform distribution, which, if found, would indicate absence of bias. 

No “stopping criterion” was used.  Instead, a specified number of steps was 
performed regardless of the p-value at any particular step.

Naturally, some of these random cases happened to include one or more high 
predictive relations; these cases were examined to be sure the method provided 
unbiased p-values even following a strong predictive increment. Performance
was found to be consistent even in these cases, as indicated by the two-way 
histogram shown below. 



7. Results:   no bias detected
The following histograms are based on one million multiple regressions using 
forward selection to construct 1, 2, and 3 predictor models from completely 

random data. The p-values estimated by our proposed method appear uniform 
at all steps (except the very rightmost interval, which is an artifact of the 
rejection of datasets when consistent null values could not be found on 
subsequent steps after 5000 successive attempts).  In the second row 
histograms below, the number of these aborted cases is shown.  Since these 
are rejected because of problems on subsequent steps, we can add the values 
back into Step 1 and 2, resulting in the histograms in the third row below.  The 
“notch” has vanished and the procedure looks uniform for all p-values.
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Joint distribution shows independence across steps

Conditional stepping also unbiased 
In the Monte Carlo results reported above, the procedure performed all three 
steps regardless of the p at each step. In most applications, however, one goes 
to the next step only when the current one meets some criterion (typically, p-
value < threshold). To simulate this, we extracted all Step 3 p’s where the prior 
two steps had p<.1 (left) or p<.5 (right). These also showed no indication of bias. 
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Example: Rating treatments for back pain
Below are some regression results demonstrating the differences in p-values that result from

elimination of selection bias (in this case, bias due to selection from 20 possible predictors): 

Treatment:  Back surgery (requiring hospital stay)
Liking scale to be predicted:  A good approach  [for treating chronic back pain]

Regression p-values B-weight Multiple
Step Ours Uncorrected sign r            Predictor (objective scale)

-------
1 .1706 .0101 + .270         Under patient control
2 .1810 .0213 - .358         Has serious side effects

--------
3                         .4859  .0609     + .405         Very well researched
4                       .2125 - Disruptive to daily routine
5 .1652 + Very invasive
6                                  .1784 - Very “penetrating”

Treatment:  Chiropractic Adjustments
Liking scale to be predicted:  A good approach  [for treating chronic back pain]

Regression p-values B-weight Multiple
Step Ours Uncorrected sign r              Predictor (objective scale)
1 .0001 .0000 + .588            Very effective

-------
2 .1562 .0095 - .629            Very dangerous
3 .2434 .0261        - .656            Very “penetrating”

-------
4                             .0857        + We understand how it works
5                                 .0659 + Foreign to the body
6                               .1277 - Disruptive to daily routine

Treatment:  Injections of pain killing medication into affected area
Liking scale to be predicted:  Makes me uneasy to even think about it  [for treating chronic back pain]

Regression p-values B-weight Multiple
Step Ours Uncorrected sign r             Predictor (objective scale)
1 .0004 .0000 + .452          Painful

-------
2                      .2040 .0131       +     .510          Has serious side effects
3                      .2250   .0279 +     .549          Very well researched
4                      .3766   .0575      - .575          Very effective
5                      .0041   .0205       - .610          Treats the mind

-------
6                      .4861  .0970       +     .627          Requires patient effort



Treatment:  Non-narcotic prescription pain killing tablets
Liking scale to be predicted:  A good approach  [for treating chronic back pain]

Regression p-values B-weight Multiple
Step Ours Uncorrected sign r              Predictor (objective scale)
1 .0025 .0001 + .394           Natural approach
2 .0189 .0011 + .505           Conventional treatment

-------
3 .0740 .0052 + .566          Very effective
4 .2525 .0229 - .601          Has serious side effects

-------
5                          .1318        +  Treats the body
6                                .1367        + Very harsh
7 .1668 - Very well researched
8                                 .2254        +                 Under patient control

Step    Mult. R      Seed 1   Seed 2 Seed 3
1       .322            .0308  .0384   .0361
2       .417            .1068   .1054   .1112
3       .515            .0009   .0011   .0006
4       .564            .1077   .1116   .1101

Treatment:  Herbal teas
Liking scale to be predicted:  A really cool thing to try  [for treating chronic back pain]

Regression p-values B-weight Multiple
Step Ours Uncorrected sign r              Predictor (objective scale)
1 .0308 .0021 + .322           We understand how it works
2 .1068 .0085 + .417           Treats the body
3 .0009 .0016 - .515           Foreign to the body

-------
4                      .1077 .0126 + .564           Is disruptive to daily routine

-------
5                .1507 + Conventional medical treatment
6 .1536 - Very invasive
7 .1112 + Natural approach
8 .1507 + Very “penetrating”

Approximation accuracy

Because each null distribution is approximated by a random sequence, there will 
be some variation from one run to the next.  Below are three different sets of p-
values for the same multiple Rs (from ratings of ‘Herbal Teas’). 

In this case, 10,000 random null cases were generated each time, requiring more 
than a minute on a typical Pentium desktop computer. The ‘jitter’ in the estimates 
is roughly .005.    



8. Discussion/Conclusion: 
a working method with many applications

This empirical method, which adjusts the null for selection bias while pruning out 
invalid null cases might be called ‘pick and prune’.  Our application indicates that 
compact and sensible relationships can be recognized once the serious bias and 
inflated significance due to selection is removed.  So far, our Monte Carlo tests 
indicate that this method is either unbiased or so slightly biased that the bias 
cannot be detected with one million cases. This suggests that the method, and 
variants of it, might be useful in a wide range of analyses where post hoc 
information is used – or could usefully be introduced. 

Because the method is built upon a theoretical account of how the bias arises 
and can be corrected, variations of the method consistent with this theory seem 
likely to be successful. 

For example, the method can be generalized to introduce model/data selection 
into such procedures as MANOVA and Discriminant Analysis, by implementing 
an incremental selection logic in canonical correlation (in fact, such a procedure 
is in development and is already partly programmed). 

Post Hoc tests
In collaboration with Dr. R. C. Gardner, also at the University of Western Ontario, 
we have begun to explore application of the method to post hoc tests and the 
problem of multiple comparisons for ANOVA, chi-square, etc.  One approach 
incrementally predicts dependent variables by contrast-coded vectors.
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