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Summary 
 

The capabilities of matrix notation and algebra are generalized to n-way arrays. The 

resulting language seems easy to use; all the capabilities of matrix notation are retained and 

most carry over naturally to the n-way context. For example, one can multiply a three-way 

array times a four-way array to obtain a three-way product. Many of the language�s key 

characteristics are based on the rules of tensor notation and algebra. The most important 

example of this is probably the incorporation of subscript/index related information into 

both the names of array objects and the rules used to operate on them. Some topics that 

emerge are relatively unexplored, such as inverses of n-way arrays; these might prove 

interesting for future theoretical study.   
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Introduction 

Shortcomings of current notation for multilinear models 
 Matrix notation is well suited for two-way data, such as measurements of many 
objects on multiple variables, and for two-way models, such as the structure given by a 
product of two or three matrices. However, when we consider higher-way arrays (e.g. 
objects by variables by conditions) and corresponding higher-way models, certain 
limitations become apparent. A single two-way array (i.e., a matrix) cannot directly 
represent a three-way �cubical� array of data, nor can any sum of matrix products directly 
produce a three-way latent structural object.  
 Various devices have been used to adapt matrix notation to handle three-way or 
higher-way structure.  Many of these are mentioned in References [1-3] , for example. 
They require either restriction to a single �representative� slice or unfolding/�matricizing� 
[2]  the n-way array into two-way form by adjoining slices, and then making use of special 
matrix products such as the Kronecker product and Khatri-Rao (or Khatri-Rao-Bro)  
product (see Reference [3]). 
 Very recently, an extensive set of suggestions concerning matrix and array 
terminology and notation was presented in Reference  [2].  There, the objective is primarily 
to compile and organize an account of the best current practice, but also extensions are 
offered to facilitate work with n-way arrays, some of which resemble features of the 
(independently developed) proposals to be made below. (For example, the suggested use of  
�:� in subscripts (Reference [2], p. 109) resembles our use of upper case subscripts, as will 
become clear.) However, an adequate description or comparison is beyond the scope of 
this article. 
 A different approach is the graphical notation proposed by Alsberg in [4], and 
further studied, extended, and recommended for multilinear work by D. S. Burdick (paper 
presented at TRICAP 2000, the Third Annual Meeting on Three-Way Methods in 
Chemistry and Psychology, Faaborg, July 2000).  Unlike previous proposals, it includes 
rules that allow it to easily express many non-matrix operations and transformations 
necessary for n-way multilinear algebra. 

Proposal for new notation 
 The following pages describe an alternative to matrix notation and the associated 
rules of matrix manipulation. As far as we have been able to tell, it provides all the 
capabilities of matrix notation. Once one is familiar with it, the language may be a bit 
easier to use than standard matrix notation because it relaxes some restrictions such as 
noncommutativity of multiplication. In contrast to the Alsberg (and Burdick) diagrams, the 
approach to be described below is completely algebraic and non-graphical. Nonetheless, 



                                                                N-way generalization of matrix notation       2 

both languages share the same underlying logical structure and unified approach to 
multilinear algebra and, in fact, seem complementary*. 
 Perhaps the most important feature of the proposed notation is that it treats three- 
and higher-way arrays in precisely the same way as vectors and matrices. It can represent 
and operate with arrays of any order with equal ease. Thus it is proposed here as a possible 
way to reduce or eliminate the difficulties arising from use of matrix notation in a 
multilinear context.  
 The language, which we call �array index notation� (AIN) is inspired by the 
notation and rules of algebra used with tensors, which are multilinear objects that can have 
an arbitrary number of ways or modes.  Since tensor notation is designed to be equally 
suitable for one-, two- or n-way tensors, it provides an appropriately flexible starting point 
for our array language. However, since AIN does not completely adopt the rules governing 
tensors, and can be used to work with arrays that do not have tensor properties�, it may also 
be described as a �quasi-tensor� notation.  (For an accessible introduction to tensor 
products with applications to familiar multilinear models, see D. S. Burdick [5], and for an 
introduction to tensors in the context of linear algebra, see Reference [6].)   
General features of the new notation  
 AIN has three basic characteristics that are adapted from tensor notation: 
(i) array names that are suitable for arrays of any order and that display important  
information needed for the algebra; 
(ii) algebra rules that define meaningful sums and products for arrays of any order; and 
(iii) an index summation convention that simplifies specification of linear operations on 
arrays. 
 Features of tensors and tensor notation not incorporated here include strict 
multilinearity, covariance and contravariance, and, more generally, any restriction on how 
the arrays must transform under a change of basis. (In fact, the idea of a �change of basis� 
may not even be appropriate or defined for some applications and/or some models.)  
 Two new (non-tensor) principles are introduced:   
(i) a subscript convention that allows sets of index values rather than single index values to 
be specified at a particular subscript position (this facilitates representation of subarrays 
and arrays); and  
(ii) a different treatment and interpretation of subscript order.  
These ideas are explained in Rules 2 and 7 below. 
 Other new notational devices are described which are helpful but do not 
fundamentally extend the notation.  They are concerned with �composite subscripts�, which 

                                                 
*In fact, Alsberg and Burdick have both suggested that the diagram notation could serve as a  �front end� to 
AIN. 
� Some recent articles in the multi-way modeling literature use the word �tensor� to mean �three-way or 
higher-way array� and others treat it even more generally, as if it is interchangeable with the word �array�.  
Either use risks interdisciplinary confusion, since it conflicts with the existing, more restricted use of �tensor� 
by mathematicians, physicists, engineers, etc. For example, [6] gives the narrower definition and provides a 
way to determine whether an array has �tensor character�. 
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help bridge AIN and conventional matrix methods, and �composite array elements� (see 
Rule 3 below), which allow compact expression of partitioned arrays, for example. 
Illustrative examples of the new notation 
 The features of the language are illustrated in Tables I-V. These tables provide a set 
of examples that starts with very basic characteristics of object names and gradually 
introduces each new feature. Some readers (e.g., those who prefer not to read instruction 
manuals before trying out a new device) may prefer to start by reading these tables to get a 
concise overview of the language, and then proceed to the formal statements of rules below 
in order to clarify aspects that the tables do not make clear.  

------------------------------------ 
Insert Tables I-V about here 

------------------------------------ 
 

Rules for array index notation   
 
 Seven basic rules for AIN are presented below.  Where applicable, the reader will 
also be referred to particular parts of Tables I-V for illustrative examples of how a given 
rule is applied.  

Rule 1. Array names  
(a) Definition of terms. The term �array� is used to represent any ordered set of numbers 
 or subset thereof (see Rule 2). This includes a vector, matrix, and three-way array and/or 
higher-way array. The number of ways or modes of an array corresponds to the number of 
array subscripts that are �active� (i.e., that take on more than one value within the array; see 
Rule 2).  Inactive subscripts, if attached, designate modes of the parent array of which the 
named object is a sub-array and are not counted as modes of the sub-array.  
 
(b) Name format. The symbolic name of an array usually consists of a letter* to which  
subscripts have been attached on the right. For an n-way array, exactly n of these 
subscripts will be upper case. For example, JKx  represents a two-way array indexed by J 
and K.  See Table I for further examples (other aspects of these examples will be explained 
in the rules below). 
 
(c) Multi-letter names. Multiple letters can be used in an array name if their meaning is 
obvious, as in  � JJ'cov � (if a covariance matrix is under discussion) or when they are 

                                                 
* In this paper, lower case italics are used in the array name but others might prefer a different type-face 
and/or font.  See the second ALS example, below. 
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appropriately linked (e.g., by an underline), as in JKssq .  Examples are given in line 5 of 
Table I and in Tables III-V. 
(d) Expressions in place of names. A parenthesized AIN expression can be used in place of 
a letter or set of letters.  For example,  j k JK( )b c  also represents a two-way array indexed 
by J and K, but one in which the values of the elements are computed in a specific way 
(see Rule 3 below).  This method describes rather than names the array. 

Rule 2. Simple subscripts  
(a) Upper- vs. lower-case subscripts. An upper-case subscript indicates that all values in its 
range occur in the object represented  (i.e., the subscript is �active�); lower case indicates 
that only a single value occurs (i.e., the subscript is �inactive�). For example, Ijh  is a 

subarray of IJh   (i.e., it is a vector of elements taken across every level of the first mode at 
a single level of the second mode). More generally, the upper case letter is the name of an 
index set and the subscript takes on all values that are elements in that set*. Lines 7-19 in 
Table I provide examples of subarray notation. 
   
In its normal role, where it identifies the index name associated with a given position, a 
subscript is not italicized.  In Ijh , for example, �j� represents an arbitrary level of the index 
(i.e. an arbitrary element from the index set J).  However, if a particular non-italic lower 
case appears more than once in an expression, it represents another occurrence of the same 
arbitrary level.   
 
A subscript is italicized only if it denotes a particular value, one that has been defined 
outside the expression and is now being assigned to that index, as in Iuh , which indicates 

that j = u. (This second expression is analogous to I2h except that the external variable u is 
inserted in the second position instead of the constant 2. The index set for the second 
position is still J, but u picks out a particular element of that set.) Line 19 in Table I 
illustrates the difference, where the subscript symbol �i� indicates that the first subscript 
position contains an arbitrary single value taken from an index set called �I�, while the 
subscript symbol �u� indicates that the fourth index position has the value of the variable u. 
 
(b) Expressions inside subscripts. Instead of a letter or name, a subscript position may 
contain a valid AIN expression that can be evaluated to obtain the desired index value or 

                                                 
* The idea of an �index set� containing assignable values for a given subscript position is taken from 
Reference [7]. 
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set of index values, as in 
1I, [ 2]kh +  or 

2 4 2rI, [ ... ]k k kh *.  In such cases, subscripts are separated by 
commas (and spaces). 
 

Rule 3. Composite subscripts and composite elements  
(a) Composite subscripts. A composite subscript is written by enclosing two or more 
index-set symbols in parentheses. For example,  I (JK)a  designates a two-way array that is  

a strung-out version of the three-way array  IJKa .  The �(JK)� represents a single subscript 
that takes on a distinct value for each combination of an element from the index set J with 
one from the index set K; in other words, the composite (JK) subscript takes on the values 
of the Kronecker product J⊗ K.  (By convention, the left indicator changes fastest; see Rule 
7 for more details about subscript order in the AIN context.)   
 
(b) Composite elements.  A composite element is written by enclosing an AIN expression 
or computation formula in parentheses and then assigning it subscripts. For example, 

j k jk( )b c  refers to an element in the array given above in Rule 1(d). The expression inside 
the parentheses describes the contents of the array at the location designated by the 
subscripts outside the parentheses.  
 
One or more upper-case subscripts inside parentheses indicates that the expression 
represents a sub-array instead of a single element. Any inner subscript that appears in 
upper case does not appear outside the parentheses. For example, the subscript �J� in  

i J k ik( )p q s   designates a vector at location (i,k) of a three-way array, while the entire 
array may be written as  i J k IK IJK( )p q s t=    or as  i j k IJK IJK( )p q s t=  .  The first 

representation of IJKt  emphasizes a particular sub-array structure while the second does 
not. 
 
(c) Array shape and equality.  Equality of two arrays, designated by the equal sign �=�, 
implies equality of both the array contents and array shape (also sameness of orientation, 
see Rule 7, below).  The symbol � ≈ � is used to express a weaker equality, that of contents 
but not of shape, and is read �equals ignoring shape�.  It will usually occur when composite 
subscripts are employed for what was originally a higher-way array.  Thus  IJK I(JK)a a≈   
and  IJK (IJ)Ka a≈  , for example, which implies (IJ)K I(JK)a a≈   .    

                                                 
* An anonymous reviewer suggested adopting a MATLAB-like convention that uses the colon �:� to indicate 
sequences of subarray index values, as in  

2 2I,  :2: xk kh or 
1 2I, : ,Kj ja . 
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Rule 4. Array algebra 
Array operations follow the standard rules used for tensors:  
 
(a) Addition. Arrays are summed by adding corresponding elements (i.e., elements with the 
same values in the same subscript positions). 
 
(b) Scalar multiplication. An array multiplied by a scalar has all its elements multiplied by 
that scalar. 
 
(c) Array multiplication.  The product of two arrays is an array containing (before any 
contraction) each possible combination of an element from one array times an element 
from the other, indexed by the subscripts from both arrays. For example, the array product 

IJ KLM IJ KLM IJKLMa b a b c= ⊗ =  has elements ijklm ij klm c a b= .  Typically, array 
products will be used in conjunction with contraction (explained below).  See Table II for 
examples of array multiplication (repeated subscripts and subscript embellishments such as 
I′ are discussed in Rule 6). 

Rule 5. Contraction (array trace) 
(a) Contraction of an array. Array contraction is a generalization of matrix trace.  An n-
way array can be contracted with respect to a given pair of indices by summing all 
elements where the index value on these indices is the same and placing the sum in an 
( 2n − )-way array at the location determined by the 2n −  indices not involved in the 
summation.   Both indices involved in the contraction must have the same range of values 
(more generally, both index sets must have an equivalent set of elements).   
 
For example, let  bJL  be the result of contracting  aIJKL  with respect to indices I and K.  
The elements of  bJL  are given by  jl 1j1l 2 j2lb a a= + +L    or in summation notation, by  

jl j li k ik
i k

b a δ= ∑ ∑  , where ikδ  is the Kronecker delta (i.e., 1  if  =ik i kδ =  and 0 

otherwise).  

The contraction operation is represented by enclosing inside a set of parentheses both the 
array to be contracted and (separated by two vertical lines) the index pair on which the 
contraction is to be done.* For example, an expression for the array bJL defined above is 

JL IJKL I=K( || )b a= .  

                                                 
* This contraction notation was originally proposed by D. S. Burdick for use with MATLAB (personal 
communication, circa 1990).  He also showed how the Parafac and Tucker models can be written using this  
notation. 
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The two-way case is, of course,  IJ 11 22I=J( || ) = ... ( )tracex x x+ = X      . 

(b) Contraction on multiple index pairs in one array. An array can be contracted on more 
than one pair of indices at a time, so long as the indices in each pair have the same range of 
values (same index set elements).  For example, the array IK IJKLMN , M=NJ=L( || )c a=       

has elements  ik i kj l mn jl mn
j l m n

c a δ δ= ∑∑∑∑  , where jlδ and mnδ  are Kronecker deltas.  

The entire array can also be expressed as  

IK I Kj lmn jl mn
j l m n

c a δ δ= ∑∑∑∑      . 

 
(c) Generalization to k indices in one array. A generalized or k-index contraction can be 
performed with respect to a specific set of k indices by summing all the elements having 
the same value on these k indices and placing the sum in an ( n k− )-way array at the 
location determined by the n k−  indices not involved in the summation. For example, if 
dJMN is the result of contracting aIJKLMN on the indices I, K, and L, then we can write  

JMN IJKLMN I=K=L( || )d a= .  The elements are jmn j mni kl ik kl
i k l

d a δ δ= ∑ ∑ ∑   or, 

equivalently, j mni kl ikl
i k l

a δ∑ ∑ ∑   , where iklδ  is the (three-way) generalized Kronecker 

delta ( if1      ikl i k lδ = = =  and  0  otherwise).   As always, all indices involved in the 
contraction (in this example, I, K and L) must have the same range of values. 

 
(d) Contraction of a pair of arrays (array multiplication with contraction). Two arrays can 
be contracted with respect to a given pair of indices (one index from each array) by taking 
pairs of elements (one from each array) that have the same value on the two given indices, 
computing their product, summing these products, and placing the sum in a location in the 
product array determined by the remaining (non-matching) subscripts. For example, the 
standard matrix product  XY=Z  is produced by first computing the four-way product 

IJ KL IJKLx y z=  and then contracting on J and K.  (Another way of representing this is 

IJ JL IJJLx y z=  , with contraction on the repeated subscript; repeated subscripts are dealt 
with in Rule 6.)   
 
The form of the final product array depends not only on the size and shape of the arrays 
being multiplied together but also on the user�s purposes (i.e., which contractions are 
specified).  Thus, for example, different products resulting from the same arrays might be 
represented as IJK LM IJKLM IKM) =J=L J=L( || ) ( ||a b g h=  or as 

IJK LM IJKLM I) =J=L, K=M J=L, K=M( || ) ( ||a b g h=  , depending on the circumstances.    
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(e) Generalization to k indices in several arrays. A generalized or k-index contraction can 
be performed with respect to a specific set of k indices distributed among several arrays by 
forming products of all the elements having the same value on these k indices, summing 
these products and placing the sum in an ( n k− )-way array at the location determined by 
the n k−  indices not involved in the summation.  
 
For example, suppose  dJMN  is the result of contracting an array product on the triple of 
indices I, K, and L such that JMN IJ KLM N IJKLMNI=K=L I=K=L( || ) ( || )d a b c u= = .  The 
corresponding summation notation is either jmn j m ni kl ikl

i k l
d a b c δ= ∑ ∑ ∑   or  

jmn j mni kl ikl
i k l

d u δ= ∑ ∑ ∑ , where iklδ  is the three-way generalized Kronecker delta as in 

(c) above.  The notation using u represents the process as two-stage: first the direct product 
of all the arrays is formed, then a k-index generalized contraction is performed on the 
result.  Note that the contraction need not involve every array in the product; here, for 
example, the array  Nc  is involved in the product, but not in the contraction.  

Rule 6. Summation convention for array products 
(a) Summation convention for matrices.  For array products, there is sometimes an 
alternative to the contraction notation presented above.  Tensor notation uses repeated 
subscripts to indicate how the product array is to be contracted*.  For example, the matrix 
product  XY=Z  is written as IJ JL ILx y z= , with the contraction performed on the repeated 
subscript J.  Another example is the product of the matrix  aIJ  and a two-way subarray of 
the three-way array  bJKQ  which may be written as IJ JKq IKqa b c=  , where 

ikq i kq
=1

J

j j
j

c a b= ∑  .  Under this convention, the explicit contraction notation is not needed 

but if used,  cIKq  would be denoted as  
I J JKq IJ JKq IJ J Kq I KqJ=J J=J( || ) ( || )a b a b u c= = =  .  The examples in Table II also 

use repeated subscripts. 
 
A second shared index represents an independent summation.  For example, the 
multiplication of one three-way array and two matrices to obtain a three-way array product 

is written  IJ JK HKL I H L HIL
1 =1

K J

j jk k
k j

a b u a b u t
=

= =∑ ∑ .    

 

                                                 
* This is often called the �Einstein summation convention�. 
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This summation convention is subject to the restriction that any subscript is repeated only 
twice.  A generalization of the rule to more repetitions is given in (c) below.      
 
 (b) Avoiding unwanted summation. Sometimes it is natural to use a subscript index letter 
twice but no summation over this index is desired.  In such cases, some embellishment is 
used to make the subscripts slightly different.  Here we use a single quotation or �prime� 
symbol, as is frequently done in standard tensor notation (see e.g. Reference [6]).  There 
should be no ambiguity in the use of this symbol since the transpose (or generalized 
transpose) is not indicated by a prime in AIN (see Rule 7).  To distinguish three or more 
versions of the same subscript, one can use multiple primes or introduce other 
embellishments such as the asterisk. If this becomes awkward because too many 
alternative versions of a given subscript are needed, one can employ subscripted 
subscripts. 
For example, one could write I I IIa a h′ ′=  to represent the outer product of a vector aI with 

itself, and  IJ I'J I I' II'
=1

J

j j
j

b b b b c= =∑  for the cross-product matrix obtained by multiplying 

a matrix bIJ by itself. To avoid having to use embellishments to denote no summation, of 
course, one can always use distinct subscript names and state explicitly which subscripts 
are equivalent.  This might be preferred in some multi-way cases. 
  
Having said this, however, embellished subscripts may in fact be contracted if they are 
repeated, using the convention described in 6(a) above.  For example,  

IR JR' KR' JR'' KR'' IRx y z b c d=  , where the double occurrence of R′, R′′ , J and K implicitly 
indicates contraction on these subscripts.  The generalization to more repetitions in (c) 
below also applies to embellished subscripts. Sometimes this usage may be confusing, 
especially if the expression contains embellishments of other occurrences of the same 
index name to prevent summation, and in such cases should be avoided.   
 
Some of the items in Tables II-V demonstrate both uses of embellishments.  For example, 
line 9b in Table II shows I′ used once to indicate no summation over I, and J′ used twice to 
indicate contraction over J′. 
 
 (c) Multilinear generalization of the summation rule. When n arrays are being multiplied 
together and the same symbol occurs as a subscript in k of these, the product array is given 
a k-index generalized contraction on the matching subscripts (see also Rule 5(e)).  In other 
words, when the same index occurs in three or more arrays in a multi-array product, 
elements having the same value of the repeated index are multiplied together and then 
these products are summed across the range of the index.   
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For example, the Parafac/Candecomp model [8,9] can be written for a single element as 
ijk i j kr r r

r
x a b c= ∑  if we combine AIN with standard summation notation, and for the 

entire array as IJK I J K
=1

R

r r r
r

x a b c= ⊗ ⊗∑  in AIN and Kronecker product notation.  AIN 

and composite subscripts allow us to write the model for the unfolded or matricized [2] 
version of the array as I(JK) IR jr kr (JK)R( )x a b c= .  However, by using AIN and the 
generalized summation rule, the entire three-way array may be represented simply as 

IJK IR JR KRx a b c= . 

 
It is always possible to replace an expression involving the generalized summation rule 
with one that does not, by using the generalized Kronecker delta.  For example, the 
Parafac1 model can also be represented as IJK IR JR' KR'' RR'R''x a b c δ=   (which highlights its 
structure as a special case of the Tucker3 model; see, e.g.  References [10,11 ]).  In fact, 
one must use the less compact form involving the generalized Kronecker delta whenever 
the generalized summation rule would lead to ambiguity. 

Rule 7. Subscript order (including array transpose) 
 (a) Array orientation and generalized transpose. The order of the subscripts attached to an 
array name determines the array �orientation�. Changing this order is a generalization of 
taking the transpose of a matrix.  Consequently, if IJx = X , then JIx ′= X . Likewise, array 

RJKSa  is one possible transpose of the array JKRSa . There are 24 possible orientations of 
this array, and so any particular version has 23 possible transposes. 
 
(b) Array orientation and equality. The standard equal sign (�=�) between two arrays 
implies equality of both the arrays and their orientation. Thus, in general, IJK IKJa a≠ . 

However, transposes have a weaker kind of equality, namely, equality of array structure 
and contents.  The symbol � ≅ � is used to express this weaker equality (but it does not 
preclude strict equality); it is read as �equals as object� or �equals ignoring orientation� or 
�equal up to a permutation of subscripts�.  Hence IJK IKJa a≅ .  Likewise, KL IJy x≅  implies 
either KL JIy x=  or LK JIy x= .  Naturally, if KL JIy x=  then LK IJy x=  and similarly, 

LK JIy x=  implies  KL IJy x= . 

 
(c) Symmetry.  If an array is unchanged when two particular indices are permuted (e.g., 

IJK IKJa a= ) then the array is symmetric with respect to those two indices.  If the array 
reverses sign when two particular indices are permuted (e.g., IJK IKJa a= − ) the array is 
anti-symmetric or skew-symmetric with respect to the two indices.  An array that remains 
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constant under any permutation of indices is symmetric (without qualification), and one 
that changes sign under permutation of any two indices is anti-symmetric (without 
qualification). With higher-way arrays, there are additional aspects of symmetry that can 
be considered (e.g., involving relations among effects of different possible permutations), 
but these are beyond the scope of this article. 
 
(d) Subscript order for the product of arrays.  An expression describing the product of two 
or more arrays does not, in itself, establish the subscript order of the result.  If the 
preceding text has stated that �subscript order is left unspecified� then  

IJ MJK IMK MIKa b c c≅ ≅ ≅ L   .  Otherwise, the orientation of the product array is 
determined in one of the following ways (listed in order of priority): 
 (i) by explicitly specifying it in the expression, using  �=� instead of  � ≅ � ; 
 (ii) by previously having specified an ordering convention (e.g., �throughout this 

section, the default subscript symbol order will be M,V,I,U,W,G�); or 
 (iii) by using the alphabetical order of the subscripts. 
 
(e) Subscript order and subscript correspondence. In an array product, corresponding 
subscripts (for purposes of contraction) are those with matching symbols.  In an array sum, 
corresponding subscripts are those with matching positions in the subscript lists of the 
arrays being added.  Thus, subscript order does not affect multiplication but it does affect 
addition. Subscript order also affects the sequence of elements resulting from a vec( ) 
operation. 
 
(f) Indicating hidden order via annotated subscripts. In cases where ambiguities 
concerning subscript names, subscript correspondence, etc. might arise, subscripts can be 
�annotated� by placing a horizontal line underneath the subscript set, and then any 
information needed below that.  For example, the following expression represents a two-
way subarray of IJRa  at level g+3 of I, the first subscript; it specifies that the second 
subscript, J, ranges over its full set of index elements, and that the third subscript, R, takes 
on only the three values 1, 3 and 8 rather than the original full index set for R: 

+3, J, [1,3,8]
i J R

.ga  

 
 

Using the array operations 

Array addition 
 Addition and subtraction of n-way arrays is used the same way and in the same 
contexts as vector and matrix addition. For example, a fallible version of the Tucker3 
model can be represented as  IJK IR JS KT RST IJKx a b c g e= +      . 
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Array multiplication 
 Array multiplication under AIN is generally independent of array order.  For 
example, by using our freedom to chose the orientation of the array product, we can write  

IJK JR IKRa b c=   and  JR IJK IKRb a c= .  (If the subscript order has already been fixed for some 
reason, however, we can only write IJK JR JR IJKa b b a≅  .) 
 It is not the underlying operations (tensor product and contraction) that make 
standard matrix multiplication non-commutative, but rather, it is the convention that the 
contraction be applied to subscripts that are �adjacent� (i.e., the column index of pre-
multiplying matrix and row index of the post-multiplying matrix).  Hence the product 
depends on the order of the matrices.  In contrast, AIN contracts on subscripts that have 
matching index-set names (�I�, �J�, etc.), and this is independent of order and orientation of 
the arrays being multiplied.  
 Another difference is that matrix notation determines the order of the subscripts of 
the product matrix by the order of the matrices being multiplied.  The subscript order in 
AIN is more flexible, however, since it can be chosen as desired or as determined by a 
convention. 
 Appendix I provides further details on the application and interpretation of array 
multiplication, including demonstrations of commutativity and associativity.   

Array �division� or inversion 
What kind of array inverses exist? 
 A matrix inverse is that matrix which, when multiplied by the original one, yields 
the identity matrix.  When this is generalized to rectangular matrices, the identity is only 
expected if the matrix is multiplied by its inverse in the appropriate order, and the resulting 
identity is not expected to be the same size as the original matrix.  For the rank deficient 
case, and for other kinds of generalized inverse that are �weaker� than Moore-Penrose, the 
expectations are even more modest.  It is not surprising, then, that we should be prepared 
to accept some restriction on the conditions of multiplication and some flexibility 
concerning the expected results, when the notion of inverse is generalized to higher-way 
arrays.  
 What should result when an n-way array is multiplied by its inverse?  Sometimes 
one might want a superdiagonal array (i.e., a generalized Kronecker delta) but other times, 
an array that is �slicewise� identity (i.e., consists of matrices, each of which is the identity).  
There are almost certainly additional interesting and potentially useful kinds of inverses of 
higher-way arrays.  Inverses of a particular kind might not exist for a particular class of 
arrays, or might only exist if certain rank conditions are fulfilled, or perhaps only for 
certain very special cases.  
 It would be interesting to know what regularities can be discovered about which 
kinds of inverses exist and when.  We have not studied the general question of higher-way 
inverses and know of no significant work in this area, although those who have studied 
array rank and/or array diagonalization, such as J. DeLeeuw, H. A. L. Kiers, J. B. Kruskal, 
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and J. TenBerge, have thereby implicitly worked on array inverses.  If progress has been 
made, some reader(s) might bring this to our attention; if not, I would encourage 
mathematically talented scholars to look at this question. 
 As an example of how AIN might be used in the study of array inverses, consider 
the simplest Parafac model  IJK IR JR' KR'' RR'R''x a b c δ=  , mentioned above in Rule 6.  Suppose  

aIR,   bJR′  and  cKR′′  are full column rank.  What happens if we define a six-way array y  as 
+

IR JR' KR'' IR JR' KR'' IJKR R'R''( )a b c a b c y+ + += = ?  Then we have  

 IJK IJKR R R IR JR KR RR R IR JR KR( )( )x y a b c a b cδ + + +
′ ′′ ′ ′′ ′ ′′ ′ ′′=   . 

This may be rewritten as 
  IJK IJKRR R IR IR JR JR KR KR RR R( )( )( )x y a a b b c c δ+ + +

′ ′′ ′ ′ ′′ ′′ ′ ′′=  

or as  
 IJK IJKRR R RR R R R R RR R RR Rx y δ δ δ δ δ′ ′′ ′ ′ ′′ ′′ ′ ′′ ′ ′′= =    . 

Thus, by one definition of a three-way inverse, y would seem to be the inverse of  x.  In the 
two-way case, this type of inverse is closely related to the Moore-Penrose inverse, but in 
general, this method would seem to produce an inverse with twice as many ways as the 
array for which it is the inverse.  There are probably inverses that are more compact, and 
they could be more desirable.  
 Note, however, that caution is required when working with array inverses. In 
expressions such as those above, a very specific interaction between different quantities is 
represented but this is not reflected by specific notation. AIN does not currently have 
distinct symbols or conventions to differentiate between different kinds of array inverses, 
and so the intended meaning of expressions like � IJKx+ � must be defined each time or be 
quite clear from context. This is an area for further development by those studying array 
inverses (and/or solutions to least squares problems, see below). 
  
Inverses for solving least squares problems 
 Clearly, one important kind of inverse is necessary if AIN is to be a suitable 
substitute for, and generalization of, matrix notation.  This is the class of �generalized 
inverses� which provides a solution to certain least-squares problems posed in terms of 
arrays, and is important for estimation of models by methods like Alternating Least 
Squares (ALS).  Model estimation can also be done by methods such as Paatero�s 
Multilinear Engine [7], which is sufficiently flexible and powerful to allow the estimation 
of the parameters of higher-way models without direct closed-form computation of array 
inverses.  Nonetheless, the widespread use and good features of ALS prompts us to 
provide this option in the AIN context, and it is demonstrated later in the paper.  
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Uses of composite subscripts 
 Composite subscripts can be used both to regroup subscripts or �unfold� a higher-
way array into a lower-way one and to �vectorize� it.  For example, IJKa can be unfolded 
into a vertical matrix  (IJ)Ka , unfolded horizontally as  I(JK)a  or vectorized as (IJK)a .  A 

higher-way array such as  IJKLMNb  can be unfolded in various ways, for example into a 
four-way array (IJ)(KL)MNb  or into a matrix  (IJK)(LMN)b , and it can also be vectorized as  

(IJKLMN)b .  The ordering of the elements in the unfolded array or vector should be explicit 
�a suggested convention is that the fastest changing (or most deeply nested) subscript is on 
the left, and those changing successively more slowly occur in sequence left to right.  
Unfolding arrays into matrices is needed in problems involving generalized inverses, as 
will be shown in the ALS examples below. 
 
 Another important use of composite subscripts is for designating subparts of 
higher-way arrays.  This use is demonstrated in Appendix II with partitioned matrices and 
higher-way arrays.    

AIN representation of some important models 
 Tables III and IV show matrix notation contrasted with AIN for some two-way 
factor models and several ways of writing Parafac models, respectively.  Only AIN is 
presented in Table V for the various Tucker models. The two-way factor models are self-
explanatory; they are easily represented in matrix notation and what AIN adds is the size of 
each matrix.  The same might be said for the other models when they are presented in two-
way form, but AIN is the only alternative for higher-way representations.    
 The Parafac1 model [8] for a full array cannot be represented in matrix notation, 
and so it is also presented for any slice and for the unfolded array.  The full array AIN has 
three variations here, the first of which demonstrates the generalized summation rule over 
R, the second which represents the model as a special case of the Tucker3 model [10,11 ] 
and the third which views R (i.e., factors) as a fourth mode and incorporates a vector of  R 
ones (i.e., 1R) to sum over it (i.e., sum the factor contributions).   
 The arbitrary-slice Parafac1 AIN is also given in three forms.  The first is a simple 
multiplication of three matrices.  The second uses composite elements and the generalized 
summation rule to accomplish the same thing.  The third multiplies two matrices and a 
vector from C without an intermediate diagonal matrix. It also employs the generalized 
summation rule.  The third version is presented in two ways to demonstrate the uses of 
commutativity: the first more closely mirrors the corresponding matrix formula, the second 
more closely represents the underlying logic and is more simply related to the prior full-
array representation. 
 The two unfolded arrays are written in matrix form using Bro�s notation [1] and are 
represented in AIN by using regrouped subscripts and composite elements.  None of the 
alternative representations for Parafac1 match the simplicity of the first alternative given 
for the full array, however.  Their value lies in their different perspective, which may be 
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useful in specific situations (such as a discussion bridging the gap between matrix and 
array models). 
 The Parafac2 model [1,12]* for the full array, which once again matrix notation 
cannot represent, requires the use of composite elements in AIN.  The AIN representation 
of an arbitrary slice is another demonstration of the generalized summation rule, and of the 
order independence of matrix multiplication. 
 The various Tucker models (see [11] for Tucker2, -3 and -n) in Table V, are all 
easily represented in AIN in full array modeling form.  (�Tucker0� is not a real model, of 
course, and is included only for completeness.)   Just as with the Parafac models in Table 
IV, these models can be represented in matrix notation as well as AIN if the array is 
unfolded, but were not included in the table to save space.  The last two lines of Table V 
give special versions of T3 and T2 for covariance analysis.  The last model is the basis for 
Carroll�s independently developed MDS model called IDIOSCAL (J. D. Carroll and J. J. 
Chang, paper presented at the Meeting of the Psychometric Society, Princeton, NJ, March 
1972) [9,13] which allows IDIOsyncratic SCALing of both dimension weights and angles.
  
 

Least squares estimation of model parameters  
 We now have the machinery needed to use AIN for solving multilinear problems. 
We can demonstrate this by considering the estimation of parameter sets for multilinear 
models. 
Example 1.  ALS estimation of the Parafac1 model 
As noted in Rule 7(c) and in Table IV, one way to write the Parafac/Candecomp model is  

IJK IR JR KRx a b c= .  One can easily express the ALS procedure to estimate any one of the 
sets of parameters a, b and c (i.e., obtain a least squares solution for one set while taking 
the others to be fixed) by using composite elements and composite subscripts.  For 
example, we can write the Mode A estimation procedure as   

 IR IJK JKR( )a x y +=  
where 
 JKR jr kr JKR( )y b c=      . 

To obtain JKR( )y +  , we first regroup the elements of y as (JK)Ry  so that it becomes a 

two-way array, then compute its Moore-Penrose inverse ( )(JK)Ry
+

and finally, �ungroup� 

the elements of the inverse.   
 

                                                 
* See also Kiers HAL, Ten Berge JMF, Bro R.  PARAFAC2�Part I.  A direct fitting algorithm for the 
PARAFAC2 model.  J. Chemometrics 1999; 13: 275-294. 
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In fact, we could have used composite subscripts to impose a corresponding two-way 
regrouping on IJKx  at the beginning.  Then the estimation formula could have been viewed 
as an ordinary matrix equation 

 IR I(JK) (JK)R( )a x y +=      . 

Some might prefer to do this in practice, since, based on what we know now, the array 
inversion must be reduced to a matrix problem.  In theory, however, this added regrouping 
is unnecessary.  With further developments in the area of array inverses, it is hoped that the 
need for regrouping will be reduced or eliminated altogether.  
 
Contrast the regrouping of  IJKx  into  I(JK)x  with the more cumbersome and less 
transparent matrix notation, which would represent the model as 
 [ ] [ ]1 2 1 2... K k K′ ′ ′ ′=X X X AD B AD B AD B AD BL L ,  

where the Xk are I by J slices of the data array; the Di diagonals comprise rows of C, a K 
by R set of parameters; and A and B are I by R and J by R parameter sets, respectively.   
The estimation of A would then be represented as 

[ ][ ]1 2 1 2... K k K
+′ ′ ′ ′=A X X X D B D B D B D BL L  

 
(see e.g. Reference [14], p. 50). The economy and transparency of AIN is even more 
apparent in four-way Parafac, where the estimation of the Mode A matrix would be 
represented as 

 IR I(JKL) jr kr lr (JKL)R(( ) )a x b c d += . 

 
Sometimes AIN will suggest a computation that might not have been tried otherwise, for 
example, an alternative algorithm for Parafac that estimates the parameters one row at a 
time.  The estimation sub-step to update one row of a can be written (with the �+� 
designating the inverse placed above the subscript for compactness) as 

 iR iJK JR' KR''a x b c+ +=    . 
This is not a least squares procedure, but it avoids the computation and inversion of the 
larger y matrix that is necessary in the least squares version.  Preliminary tests suggest that 
an iteration may take only 4% of the execution time required by the true least squares 
version. On the other hand, it may have undesirable properties such as instability in some 
cases�this remains to be studied*.  
 

                                                 
* This approach has recently been proposed by Jiang J, Wu H, Li Y, Yu R.  Three-way data resolution by 
alternating slice-wise diagonalization (ASD) method.  J. Chemometrics 2000; 14: 15-36. 



                                                                N-way generalization of matrix notation       17 

Alternative conventions for array symbol fonts 
 Until now, we have used lower-case italics for the non-subscript portion of an array 
name.  This convention was chosen to express the underlying unity of the nature of all 
array objects, be they scalars, vectors, n-way arrays, elements from arrays, subarrays, or 
whatever. In addition, this allows the text part of the name of a given array to be the same 
as that of any subarray of that array, including a single element. 
 This typographical convention is not an essential part of AIN, however.  Other 
more distinctive fonts could be used for the array names, or even different display 
conventions for the text part of the name to distinguish arrays of different orders (as 
below). These would not change the properties of the objects or the rules for working with 
them.  
 Besides demonstrating general properties of AIN, the second ALS example below 
illustrates the use of an alternative typeface, one suggested by Henk Kiers (personal 
communication, July 2000).  The usual matrix notation conventions for vectors, matrices, 
and arrays are retained, and so the resulting equations look more familiar and may be 
easier for some users to read.  This typography might thus be used to facilitate the 
transition from matrix notation to full AIN.* 
Example 2.  ALS estimation of the parameters in the Tucker3 model 
The AIN representation of the Tucker3 model is IJK IR JS KT RST=X A B C G   .  
If the Tucker model being estimated has the same number of factors for each mode, 
estimation of the core array is simply and transparently written (with the compact inverse 
notation used above) as 

 RST IJK IR JS KT
+ + +=G X A B C   , 

 
which is a true least squares procedure based on a two-way case proven in Reference [15], 
pp. 60-61. 
 

(Note that even in the case where  IR JS KT
+ + +A B C  do not all have the same rank, the solution 

above will work. This is because no contraction has been done, and so the inverse is a six-
way array which retains the full information.)  
 
Of course, it would also be possible to estimate the core by regrouping elements so that the 
approach more closely parallels the standard matrix one.  This would be 
 
                                                 
* (An even more minimalist approach --not illustrated in this article-- is to use conventional matrix notation 
and conventional rules of algebra except where it is helpful to invoke the extended capabilities of AIN.  The 
AIN terms are distinguished from standard matrix terms by their appended upper-case subscripts, and this 
implies that AIN rules of algebra must be used when manipulating them. However, this hybrid approach 
might seem awkward to many users and would probably be replaced by a more uniform AIN notation as 
familiarity with AIN increased.) 
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 (RST) (IJK) ir js kt (IJK)(RST)( )a b c +=g x      . 

If we wanted to avoid the use of a composite element, we could let IJKRST IR JS KT=Z A B C  

and, since (IJK) (RST) (IJK)(RST)=x g Z , we could write the estimation as 

(RST) (IJK) (IJK)(RST)( )+=g x Z  . 

The estimation of the Mode A, B, and C loading matrices is similar to that used in Parafac, 
except with the addition of the core array.  For example, the Mode A estimation is  

 +
IR IJK JKR=A X Y      , 

where 

 JKR js kt JKST RST( )b c=Y G      . 

 

What was said in Example 1 above about the computation of +
JKRY  applies here as well, as 

does the comment about regrouping IJKX  into  I(JK)X  .  In this case, the two-way 

regrouping of JKRY  can be viewed in different ways, however.  One is  

 ( )(JK)R jS kT rST (JK)R( )b c g=Y   , 

and another is  

 ( )(JK)R js kt (JK)(ST) R(ST)( )b c=Y G  . 

The second regrouping allows us to obtain +
(JK)RY  from the product of two other matrix 

inverses, i.e.  

 ( ) +
(JK)R js kt (JK)(ST) R(ST) js kt (JK)(ST) R(ST)( ) ( )b c b c

++ += =Y G G    

(provided that +
js kt (JK)(ST)( )b c  and R(ST)

+G  have sufficient rank). This has the advantage 

that the larger matrix (JK)RY  does not have to be inverted.  The �ungrouped� +
(JK)RY  may 

now be represented as  

 + +
JKR js kt JKST RST( )b c +=Y G   . 

 
The flexibility in grouping demonstrated by the above examples is the result of the 
relatively arbitrary nature of the arrangement of elements in these arrays; two different 
groupings can be functionally equivalent so long as the subscripts unambiguously define 
the particular multiplication and summation of elements necessary to obtain the product 
independent of the grouping.  Thus, by using composite subscripts, higher-way arrays can 
be reduced to matrices where conventional methods and ideas of inverses may be applied. 
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Future directions 
 It is easier to demonstrate how AIN can simplify the expression of known 
multilinear models and estimation methods than it is to demonstrate how it might facilitate 
fundamentally new kinds of models or methods. There are, however, a few observations 
that suggest possible new directions.  
 Because of its greater flexibility, expressions can be written in AIN that specify  
relationships among arrays that seem impossible to express in matrix notation*. Consider 
the equation 
 IJKL IRST JRUV KSUW LTVWx a b c d=      . 
Here, every array is linked by one contraction to each of the other three. How could this 
possibly be represented with matrix notation, even allowing unfolding of x? Or consider 
the simpler three-way version given in line 12 of Table II.  Here, there are three �sources� 
or �types� of factors: type-r, type-s, and type-t. These factors do not act through individual 
modes but instead through pairs of modes. Consequently, each of the three modes has a 
factor loading �matrix� that is actually a three-way �factor loading array�, containing an 
entry at each external level (i or j or k) for each combination of two internal levels (r and s, 
r and t, or s and t). This seems to represent some kind of factor interaction model, where 
individual factors do not have a simple multiplicative effect in a given mode. Might this be 
a more appropriate approach for modeling an ecological network? Further generalizations 
may also be useful. For example, could there be a meaningful model in which the loadings 
array for some mode(s) have a different number of ways from others? Could it even make 
sense to combine this with one or more arrays that are purely internal, similar to Tucker�s 
�core array�? 
 The flexibility of AIN for expression of relationships might also make it possible to 
use it to represent structural equation models.  Since little work has been done on three-
way or higher-way structural equation models, perhaps this could be a useful way to 
approach this research area. 

                                                 
* This raises a fundamental question: can a proof of the nonequivalence (or equivalence) of the two languages 
be constructed? That is, for any expression that can be written in AIN is it possible to find an equivalent 
matrix expression (involving unfolded arrays)? Is there always (AIN product) ≈  (matrix product) or even 
(AIN expression) ≈  (matrix expression)? 



                                                                N-way generalization of matrix notation       20 

Acknowledgements 
 
I would like to thank Marg Lundy for many important contributions, and also Donald 
Burdick for inspiration and Henk Kiers for useful discussion. This research was supported 
by Natural Sciences and Engineering Research Council of Canada research grant OGP-
000-7896.   



                                                                N-way generalization of matrix notation       21 

References 
   
1. Bro R.  Multi-way Analysis in the Food Industry: Models, Algorithms and 

Applications.  University of Amsterdam:  Amsterdam, 1998; 
http://www.mli.kvl.dk/staff/foodtech/brothesis.pdf  [1 March 2001]. 

 
2. Kiers HAL.  Towards a standardized notation and terminology in multiway analysis.  J. 

Chemometrics 2000; 14: 105-122. 
 
3. Harshman RA. �Stretch� vs.�slice� methods for representing three-way structure via 

matrix notation. Department of Psychology Research Bulletin #761; University of 
Western Ontario: London, ON, 2001. 

 
4. Alsberg BK.  A diagram notation for N-mode array equations.  J. Chemometrics 1997; 

11: 251-266. 
 
5. Burdick DS. An introduction to tensor products with applications to multiway data 

analysis. Chemom. Intell. Lab. Syst. 1995; 28: 229-237. 
 
6. Akivis, MA, Goldberg VV.  An Introduction to Linear Algebra & Tensors (rev. English 

edn), Silverman RA (trans. and ed.).  Prentice-Hall:  Englewood Cliffs, NJ, 1972. 
 
7. Paatero P.  The multilinear engine−a table-driven, least squares program for solving 

multilinear problems, including the n-way parallel factor analysis model.  Comput. 
Graph. Statist. 1999; 8: 854-888. 

 
8. Harshman RA.  Foundations of the PARAFAC procedure:  Models and conditions for 

an �explanatory� multi-modal factor analysis.  UCLA Working Papers Phonet. 1970; 
16: 1-84.   

 
9. Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling 

via an N-way �Eckart-Young decomposition.  Psychometika 1970; 35: 283-319. 
 
10. Tucker LR.  Some mathematical notes on three-mode factor analysis.  Psychometrika 

1966; 31: 279-311. 
 
11. Kroonenberg PM.  Three-mode Principal Component Analysis.  DSWO Press: Leiden, 

The Netherlands, 1983. 
 
12. Harshman RA.  PARAFAC2:  Mathematical and technical notes.  UCLA Working 

Papers Phonet. 1972; 22: 30-44. 
 

http://www.mli.kvl.dk/staff/foodtech/brothesis.pdf


                                                                N-way generalization of matrix notation       22 

13. Carroll JD, Wish M.  Models and methods for three-way multidimensional scaling.  In 
Contemporary Developments in Mathematical Psychology, Vol. 2, Krantz DH, 
Atkinson RC, Luce RD, Suppes P (eds).  Freeman: San Francisco, 1974; 57-105. 

 
14. Harshman RA, Lundy ME.  PARAFAC: Parallel Factor Analysis. Comput. Statist. 

Data Anal. 1994; 18: 39-72. 
 
15. Rao CR, Mitra SK.  Generalized Inverse of Matrices and its Applications.  Wiley & 

Sons:  New York, 1971. 
 
16. Harshman RA, Lundy ME.  Data preprocessing and the extended PARAFAC model.  

In Research Methods for Multimode Data Analysis, Law HG, Snyder CW, Jr, Hattie 
JA, McDonald RP (eds).  Praeger:  New York, 1984; 216-284. 

 
17. Kruskal JB, Harshman RA, Lundy ME.  How 3-MFA data can cause degenerate 

PARAFAC solutions, among other relationships.  In Multiway Data Analysis, Coppi R, 
Bolasco S (eds).  North-Holland:  Amsterdam, 1989; 115-121. 

  



                                                                N-way generalization of matrix notation       23 

 

Appendix I.  Examples of the substantive interpretation of 
array multiplication 

 As a concrete application of how higher-way array products can be interpreted, 
consider the problem of computing the vitamin content of foods.  We start simply, by first 
assuming that we have two matrices, one V by I and the other I by D, that we call  aVI   and  
bID, respectively.  The element avi gives the amount of vitamin v (e.g., ascorbic acid, 
riboflavin, etc.) in cooking ingredient i (peas, beef, butter, etc.), expressed, say, in 
milligrams of the vitamin per gram of the ingredient.  The entry bid gives the amount of 
ingredient i in dish d (chicken soup, beef stew, chocolate cake, etc.) expressed, say, in 
grams of ingredient per kilogram of the dish.  
 The product of these two matrices, cVD, specifies the amount of each vitamin in 
each dish (in milligrams per kilogram), and the relation can be represented in AIN as 

VI ID VDa b c=  .      

Array-matrix multiplication 
 Now suppose that we start with more information. Since year-to-year weather 
variations and/or farming method changes and/or variation in genetics of the seed planted, 
etc., produce changes in vitamin content, we consider the year that the ingredient was 
grown as another factor influencing vitamin content. We incorporate this additional 
information by converting  aVI  to a three-way array VIYa ; this array gives the typical 
amount of each vitamin (v) in each ingredient (i) as measured each year (y).  Now, the 
product of array  VIYa  and  bID , which may be easily represented as   

 VIY ID VDYa b c=      , 

gives the vitamin content of each dish for the year in which it was prepared.  Figure 1 
shows diagrammatically how to obtain VDYc .  Implicitly, the tensor product of  VIYa  and  
bID  is computed to produce a 5-way result, which is then contracted on �I� (Ingredients) to 
produce a three-way product.  

Array-array multiplication 
 In our multilinear modeling literature, array-matrix multiplication has already been 
encountered (see Kruskal as cited in [16], p. 256, Reference [17], pp. 115-116, and 
Reference [2]), but array-array multiplication is unfamiliar.  However, AIN defines such 
products and makes determining the result quite straightforward.  We again use our food 
example to demonstrate a meaningful interpretation.   
 Suppose our matrix IDb is also modified to include information about the recipe 
used for each dish, since the amounts of each ingredient may differ from one cooking 
authority (e.g., cookbook) to another.  We replace IDb  with IDAb , which gives the amount 
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of ingredient i in dish d if prepared according to the recipe of authority a.  Our four-way 
product array, 

 VIY IDA VDYAa b c=      , 

(see Figure 1, bottom) gives the amount of each vitamin in any given dish during any 
particular year, if the dish were prepared according to a particular recipe.  Formally, this 
array multiplication can be decomposed into computation of the 6-way tensor product 
followed by contraction on �I�, which yields a four-way array. 

A triple product 
 Now suppose that we introduce a third array, DPYd , which tells us how many times 
each dish was consumed by each of several persons in each of the years being considered. 
We can then form the triple array product  

 VIY IDA DPY VPAa b d c=      . 

The resulting three-way array gives the total intake of each vitamin, totaled across all 
dishes and all years, for each person using the recipes of a given authority.  
 The formation of this product is demonstrated in Figure 2, and can be viewed in 
one of two ways.  It can be seen either as a single action which creates a nine-way tensor 
product that is then contracted on the shared indices (I, D, and Y), or as two successive 
steps, each involving the product of two arrays.  In the two-step process, the flexibility of 
AIN allows any two of the three matrices to be multiplied together, in any order, and then 
the product multiplied by the third matrix (i.e., VIY IDA DPY VPA( )a b d c=  or 

VIY IDA DPY VPA( )a b d c=  or IDA VIY DPY VPA( )b a d c= ; the subscript order is arbitrarily 
determined by the user).  
 An important observation to make regarding the two-step approach is that no 
matter how the procedure is done, the intermediate step will make substantive sense.  Let 
us look at the intermediate products in the above example, the first of which is  

VIY IDA VDYA( )a b p= , which gives the vitamin content of each dish for each year, based on 
the recipes of each authority.  The second intermediate product is IDA DPY IPYA( )b d q= , 
which gives the amount of each ingredient that would have been consumed by each person 
in any given year based on the recipes of each authority.  Similarly meaningful,  the third 
product, VIY DPY VPDI( )a d r=  , gives the total amount (cumulated over the years covered) of 
each vitamin consumed by each person, broken down by each type of dish and by 
ingredients in that dish.  This last product might be useful to a mother, for example, who is 
trying to decide whether to switch to a non-dairy ice-cream substitute when making certain 
desserts for her family.  She could find the answer to questions like: �how much calcium 
has my daughter obtained from the milk content of the butterscotch sundaes that she is so 
fond of?�.  
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 (Note also that if totals are desired, any detailed breakdown can be summed across 
one or more modes by simply multiplying the array by the appropriate unit vector(s).  For 
example, the breakdown by dish but not by ingredient would be given by the array product 

VPDI Ir 1  (where 1I is a vector of all ones whose length is equal to the size of the index set I), 
and the total vitamin intake of each person would be given by the two-way table 

VPDI I D VPr t=1 1  .) 

 �Folding in� an array to add information  
 There is another sort of array-combining operation that should be described; for 
lack of a better name, we call it �folding in� an array to a product. It is best explained by an 
example.  
 For simplicity, let us go back to  

 VIY IDA VDYAa b c=    . 

Suppose we are concerned that the vitamin content of an ingredient is reduced when it is 
cooked, and we know that the higher the cooking temperature the more is lost, with some 
vitamins being more heat sensitive than others.  We obtain a table giving the loss of each 
vitamin as a function of cooking temperature (when other things like cooking time are held 
constant).  In this matrix, an element  gvt  is a value between 0.0 and 1.0 that represents the 
proportion of a dish�s typical content of vitamin v that remains if the dish was cooked (for 
the recommended time) at a temperature that is raised t degrees above its standard cooking 
temperature*.  
 We want to incorporate this information as one additional mode of the array VIYa . 
However, simple array-matrix multiplication gives us either  
 VIY VT IYTa g a=  
or 
 VIY V' T V V' I Y Ta g a=      , 

neither of which accomplishes our goal.  What we want is an array VIYTa , and we can 
obtain it by using composite elements to do what is essentially matrix-vector 
multiplication, expressed as 
 VIYT v IY v T V( )a a g=      . 

 To some readers, this might seem too far removed from our tensor-like 
foundations.  However, it can be rewritten using a more complex expression that involves 
only standard tensor products and contractions as 
 VIYT V IY V' T V V'a a g δ=   ,    

                                                 
* In this example, only temperatures above a dish�s standard temperature are considered.  If lower-than-
standard temperatures were also included, values of gvt greater than one would occur as well. 
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where δ  is the (three-way) generalized Kronecker delta (i.e., the elements vv'δ  are one 
where  v=v′ and zero otherwise). 
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Appendix II.  Partitioned Matrices and Arrays 

Partitioned Matrices in matrix notation and AIN 
 Partitioned matrices can be represented clearly, if somewhat awkwardly, in matrix 
notation.  Parallel capabilities were not deliberately built into AIN, but as it turns out, 
composite elements (Rule 3) can be used as a compact way of denoting such matrices. 
Partitioned matrices as implicit higher-way arrays 
 We define a �partitioned matrix� in the usual way:  a matrix in which subsets of the 
rows and columns are blocked off from others by boundaries or �partitions�, as in 

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

a a a a a a
a a a a a a
a a a a a a
a a a a a a

 
 
 =
 
 
 

A    . 

In contrast, A can be represented in AIN by using composite elements as 
  IJmn MN( )a       , 

where I=J=2, M=2 and N=3 (or as (IM)(JN)a  if the partitioning is ignored).  This also shows 
how A may be viewed as a �supermatrix�, a matrix whose elements are themselves 
matrices, as in  

 
11 12 13

21 22 23

 
=  

 

A A A
A A A A  

where, for example, one element (or �submatrix�) is 

  31 32
21

41 42

a a
a a

 
=  

 
A    . 

 Partitioned matrices arise in various contexts. Often they have served as another 
device for incorporating higher-way classifications into matrix form.  For example, 

IJmn MN( )a  can be written as a four-way array IJMNa  if the composite elements are 
eliminated by replacing each lower case subscript inside the parentheses with the 
corresponding index set name from outside.  This procedure is the converse of some earlier 
examples, where we started with a higher-way array and used composite subscripts to 
represent subarrays thereof.  
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Multiplication of partitioned matrices 
 It is well known that the rules of matrix multiplication used for scalar elements can 
be applied in the same way to the matrix elements of supermatrices.  For example, matrix 
notation shows the multiplication of two supermatrices A and B as  

 
11 12

11 12 13 11 12
21 22

21 22 23 21 22
31 32

 
    

=    
    

 

B BA A A C C
B BA A A C C
B B

  , 

where 

 
11 12 11 11 12 21 13 31 11 12 12 22 13 32

21 22 21 11 22 21 23 31 21 12 22 22 23 32

+ + + +   
=   + + + +   

C C A B A B A B A B A B A B
C C A B A B A B A B A B A B  . 

This equivalence is also reflected in AIN, which would represent the above multiplication 
as  MN NP MPa b c=  (M=P=2, N=3).  Viewing the problem at the level of the scalar 
elements of the submatrices, the same multiplication may be written as 

  (IJmn)MN (JKnp)NP (IKmp)MPa b c=   

(assuming each submatrix in A is I by J and each submatrix in B is J by K). 

 Still at the level of the scalar elements of the submatrices, we could also consider 
the above multiplication to be a four-way product of two four-way arrays, that is,  

IJMN JKNP IKMPa b c=  .  Or, ignoring all the partitioning, we would have 

(IM)(JN) (JN)(KP) (IM)(KP)a b c=  .  In practice, the choice of representation depends on which 
best reflects the theoretical structure of the problem at hand. 
 

Partitioned higher-way arrays  
 It is straightforward to generalize from matrix to array partitioning.  Array 
partitioning may be interpreted as simply dividing an array into regions, but an equivalent 
perspective is that arrays of arrays are constructed.  That is, n-way arrays can be built 
using m-way (sub)arrays as elements, with the size of m unrestricted relative to n. 
 Partitioning as a device to deal with higher-way arrays within a two-way context is 
unnecessary in AIN, as we have seen, but sometimes it may provide useful theoretical or 
conceptual insight into how operations at a higher scale are related to those at a smaller 
more familiar scale.  Therefore, we examine the generalization of partitioning to n-way 
arrays (keeping in mind Reference [5]�s point that most often how we visualize the 
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arrangement of the elements is irrelevant; this will become increasingly apparent as we 
consider equivalent representations below.) 
A partitioned four-way array 
 Consider a four-way array that is partitioned into four-way subarrays, as illustrated 
in Figure 3 on the left.  Here we have (IL)(JM)KNa , which after partitioning, has the 

structure IJKNlm LM( )a  .  Given that I=6, J=2, K=4, L=2, M=3, and N=6, we see that 
originally it is 12x6x4x6, and after the partitioning is a 2x3 superarray composed of 6 
elements that are 6x2x4x6 subarrays.  
 Note that, if the �nesting� of subarrays within other arrays that is indicated by the 
partitioning notation is not meaningful for the current application, we might instead replace 
the partitioned array with the unpartitioned six-way array  IJKLMNa  .  For many purposes, 
this might be equally effective, but this does not reveal the structural relationships inherent 
in the partitioning.  Still other groupings of the subscripts are possible, corresponding to 
other ways of conceptualizing the array object.  For example, one variation is hierarchical 
partitioning, where we could represent the partitioned array as IJ Klm LMn N(( ) )a  .  It is not 
particularly meaningful in this context, and we present it only to give the reader an idea of 
what other possibilities there are.   
Multiplication of n-way partitioned arrays 
 Figure 3 illustrates the result of multiplying two partitioned arrays together while  
maintaining the partitioned structure.  It is written as 
  (IJKNlm)LM (JPKmq)MQ (IPNlq)LQa b c=     . 

This views the problem as an LxM supermatrix (composed of subarrays that are IxJxKxN) 
multiplied by an MxQ supermatrix (composed of subarrays that are JxPxK) to produce an 
LxQ product (composed of arrays that are IxPxN). 
 As a check, let us represent the multiplication ignoring the partitioning in the 
arrays.  This perspective is equivalent to multiplying the scalar elements of the arrays 
together.  Now we have 
 (IL)(JM)KN (JM)(PQ)K (IL)(PQ)Na b c=   . 

Here we see the product as one big three-way array, rather than a set of smaller three-way 
arrays. 
 Unless there is some reason to retain the partitioning as shown, it is of course 
simpler to represent the partitions as more �ways� in the arrays.   Then the situation 
involves a six-way array times a five-way array, which results in a five-way product, and is 
given by  
 IJKNLM JPKMQ ILPQNa b c=  . 
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      Table I.  Objects: Arrays and subarrays 
 

        
Object 

Standar
d 
matrix 
notation 

Array 
index 
notation 

 1 Scalar a a 

 2 Vector a Ia  

 3 Matrix A IJa  

 4 N-way array A  IJK...a  

 5 Array with multi-character name ___ II'std  

    
 6 Matrix element ija  ija  

 7 Column vector in matrix ja  Ija  

 8 Row vector in matrix ia  iJa  

 9 Row 2 in matrix (as column vector)  2a  2Ja  

10 Column 2 in matrix  (as column vector) 2a  I2a  

11 Column 2 in matrix  (as row vector) 2′a  I2a  

    

12 3-way array X  IJKx  

13 kth (frontal) slab in array kX  IJkx  

14 4th (horizontal) slab in array 4X  4JKx  

15 4th (lateral) slab in array 4X  I4Kx  

16 Array fiber (column vector)  ikx  iJkx  

    

17 4-way array Y  IJRSy  

18 3-way subarray of Y  at level �r� of third mode (Mode C) rY  IKrTz  
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19 2-way subarray of Y  at level �i� of Mode A and for a level 
of Mode D specified by the value in variable u (i.e., t=u) 

iuY  iKRuy  

 
 
 
  Table II.  Matrix products 
 

 Product Matrix 
notation 

Array index 
notation 

 1 Two scalars wa  wa  

 2 Scalar and vector    or   w wa a
 Iwa   or  Ia w  

 3 Inner product of two vectors ′c d =e I Ic d e=  

 4 Outer product of two vectors ′ =ab C  I J IJa b c=  

 5 Outer product of vector with itself ′ =aa G  I I' II'=a a g  

 6 Two matrices =AB C  IJ KJ IKa b c=  

 7 Two matrices (second is square) =AQ C  IJ JJ' IJ'a q c=  

 8 Two matrices (second is square and multiplied rowwise) ′ =AQ C  IJ' JJ' IJa q c=  

    
9a Three matrices =ABC H  IJ JK KQ IQ

IJ KJ KQ IQ

,
,

etc.

a b c h
a b c h

=

=  

9b Three matrices (one repeated) ′ =AGA C  IJ JJ' I'J' II'a g a c=   

    
10 Higher-way arrays    ______ IJK JKL ILa b c=  

11 Array - subarray    ______ IjK jKL IjL ILa b c d= =  
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12 More complex linkages (e.g., for new kinds of models)    ______ IRS JST KRT IJKa b c x=  
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   Table III.  Two-way factor models 

 
 
 
 
 
 

  
 Model 

Matrix   
notation 

Array index   
notation 

 Direct fit to data ′=X AB  IJ IR JRx a b=  

   
 Indirect fit (via covariances) =C AΦA'  I I' IR RR' I'R'cov a aφ=  

 Orthogonal indirect fit =C AA'  I I' IR I'Rcov a a=  
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   Table IV.  Parafac1 and Parafac2 
 

Model Matrix notation Array index notation 

Parafac1 (for 
full array) 

 _________ IJK IR JR KRx a b c=  

IJK IR JR' KR'' RR'R''x a b c δ=  

IJK Ir Jr Kr R R ir jr kr IJKR R( ) 1 ( ) 1x a b c a b c= =  

Parafac1 (for a 
representative 
slice) 

k k ′=X AD B  IJk IR RR'k JR'

IJk IR rr kR JR

IJk IR kR JR IJk IR JR kR

( )
x a d b
x a d b
x a c b x a b c

=
=
= =or

 

Parafac1 (for 
array unfolded 
horizontally) 

(IxJK)X = A (C ◎ B)΄ I(JK) IR jr kr (JK)R( )x a b c=  
 
 

Parafac1 (for 
array unfolded 
vertically) 

(IJxK)X = (A ◎ B) C΄ (IJ)K ir jr (IJ)R KR( )x a b c=  

Parafac2 (for 
full array) 

 _________ I I'K IR kr rr' kr RR K I'R'( )cov a c c aφ ′ ′=  

Parafac2 (for a 
representative 
slice) 

Covk k k ′= AD ΦD A  
 

I I'k IR kR RR' kR I'R'cov a c c aφ ′=  
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Table V.  Tucker Models 
 

 
Model Array index notation 

T4 IJKL IR JS KT LU RSTUx a b c d g=  

T3 IJK IR JS KT RSTx a b c g=  

T2 IJK IR JS RSKx a b g=  

T1 IJK IR RJKx a g=  

�T0� IJK IJKx g=  

Symmetric T3 (e.g., for  
covariances) 

II'K IR I'R' KT RR'Tcov a a c g=  

Symmetric T2 (e.g., for MDS); 
also Carroll�s IDIOSCAL 

II'K IR I'R' RR'Kcov a a g=  
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 Figure 1.  Array-matrix and array-array multiplication. 
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Figure 2.  A product of three arrays. 
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 Figure 3.  A product of two partitioned arrays.   
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