
Original Research Article

 An index formalism that generalizes the capabilities of
matrix notation and algebra to n-way arrays

Richard A. Harshman

University of Western Ontario

Please address all correspondence to Richard A. Harshman at:
Psychology Dept.
University of Western Ontario
London, Ontario
Canada N6A 5C2

e-mail: harshman@uwo.ca
phone: 519-661-2111 ext 84691 (office)
 519-661-3663 (lab)
fax: 519-661-3213

 N-way generalization of matrix notation

 An index formalism that generalizes the capabilities of
matrix notation and algebra to n-way arrays

Short title: N-way generalization of matrix notation

 N-way generalization of matrix notation

Summary

The capabilities of matrix notation and algebra are generalized to n-way arrays. The

resulting language seems easy to use; all the capabilities of matrix notation are retained and

most carry over naturally to the n-way context. For example, one can multiply a three-way

array times a four-way array to obtain a three-way product. Many of the language�s key

characteristics are based on the rules of tensor notation and algebra. The most important

example of this is probably the incorporation of subscript/index related information into

both the names of array objects and the rules used to operate on them. Some topics that

emerge are relatively unexplored, such as inverses of n-way arrays; these might prove

interesting for future theoretical study.

KEYWORDS: Linear and multilinear algebra; tensors; array notation; three-way models;

n-way arrays; Tucker; T2; T3; Parafac; Candecomp

 N-way generalization of matrix notation

Introduction

Shortcomings of current notation for multilinear models
 Matrix notation is well suited for two-way data, such as measurements of many
objects on multiple variables, and for two-way models, such as the structure given by a
product of two or three matrices. However, when we consider higher-way arrays (e.g.
objects by variables by conditions) and corresponding higher-way models, certain
limitations become apparent. A single two-way array (i.e., a matrix) cannot directly
represent a three-way �cubical� array of data, nor can any sum of matrix products directly
produce a three-way latent structural object.
 Various devices have been used to adapt matrix notation to handle three-way or
higher-way structure. Many of these are mentioned in References [1-3] , for example.
They require either restriction to a single �representative� slice or unfolding/�matricizing�
[2] the n-way array into two-way form by adjoining slices, and then making use of special
matrix products such as the Kronecker product and Khatri-Rao (or Khatri-Rao-Bro)
product (see Reference [3]).
 Very recently, an extensive set of suggestions concerning matrix and array
terminology and notation was presented in Reference [2]. There, the objective is primarily
to compile and organize an account of the best current practice, but also extensions are
offered to facilitate work with n-way arrays, some of which resemble features of the
(independently developed) proposals to be made below. (For example, the suggested use of
�:� in subscripts (Reference [2], p. 109) resembles our use of upper case subscripts, as will
become clear.) However, an adequate description or comparison is beyond the scope of
this article.
 A different approach is the graphical notation proposed by Alsberg in [4], and
further studied, extended, and recommended for multilinear work by D. S. Burdick (paper
presented at TRICAP 2000, the Third Annual Meeting on Three-Way Methods in
Chemistry and Psychology, Faaborg, July 2000). Unlike previous proposals, it includes
rules that allow it to easily express many non-matrix operations and transformations
necessary for n-way multilinear algebra.

Proposal for new notation
 The following pages describe an alternative to matrix notation and the associated
rules of matrix manipulation. As far as we have been able to tell, it provides all the
capabilities of matrix notation. Once one is familiar with it, the language may be a bit
easier to use than standard matrix notation because it relaxes some restrictions such as
noncommutativity of multiplication. In contrast to the Alsberg (and Burdick) diagrams, the
approach to be described below is completely algebraic and non-graphical. Nonetheless,

 N-way generalization of matrix notation 2

both languages share the same underlying logical structure and unified approach to
multilinear algebra and, in fact, seem complementary*.
 Perhaps the most important feature of the proposed notation is that it treats three-
and higher-way arrays in precisely the same way as vectors and matrices. It can represent
and operate with arrays of any order with equal ease. Thus it is proposed here as a possible
way to reduce or eliminate the difficulties arising from use of matrix notation in a
multilinear context.
 The language, which we call �array index notation� (AIN) is inspired by the
notation and rules of algebra used with tensors, which are multilinear objects that can have
an arbitrary number of ways or modes. Since tensor notation is designed to be equally
suitable for one-, two- or n-way tensors, it provides an appropriately flexible starting point
for our array language. However, since AIN does not completely adopt the rules governing
tensors, and can be used to work with arrays that do not have tensor properties�, it may also
be described as a �quasi-tensor� notation. (For an accessible introduction to tensor
products with applications to familiar multilinear models, see D. S. Burdick [5], and for an
introduction to tensors in the context of linear algebra, see Reference [6].)
General features of the new notation
 AIN has three basic characteristics that are adapted from tensor notation:
(i) array names that are suitable for arrays of any order and that display important
information needed for the algebra;
(ii) algebra rules that define meaningful sums and products for arrays of any order; and
(iii) an index summation convention that simplifies specification of linear operations on
arrays.
 Features of tensors and tensor notation not incorporated here include strict
multilinearity, covariance and contravariance, and, more generally, any restriction on how
the arrays must transform under a change of basis. (In fact, the idea of a �change of basis�
may not even be appropriate or defined for some applications and/or some models.)
 Two new (non-tensor) principles are introduced:
(i) a subscript convention that allows sets of index values rather than single index values to
be specified at a particular subscript position (this facilitates representation of subarrays
and arrays); and
(ii) a different treatment and interpretation of subscript order.
These ideas are explained in Rules 2 and 7 below.
 Other new notational devices are described which are helpful but do not
fundamentally extend the notation. They are concerned with �composite subscripts�, which

*In fact, Alsberg and Burdick have both suggested that the diagram notation could serve as a �front end� to
AIN.
� Some recent articles in the multi-way modeling literature use the word �tensor� to mean �three-way or
higher-way array� and others treat it even more generally, as if it is interchangeable with the word �array�.
Either use risks interdisciplinary confusion, since it conflicts with the existing, more restricted use of �tensor�
by mathematicians, physicists, engineers, etc. For example, [6] gives the narrower definition and provides a
way to determine whether an array has �tensor character�.

 N-way generalization of matrix notation 3

help bridge AIN and conventional matrix methods, and �composite array elements� (see
Rule 3 below), which allow compact expression of partitioned arrays, for example.
Illustrative examples of the new notation
 The features of the language are illustrated in Tables I-V. These tables provide a set
of examples that starts with very basic characteristics of object names and gradually
introduces each new feature. Some readers (e.g., those who prefer not to read instruction
manuals before trying out a new device) may prefer to start by reading these tables to get a
concise overview of the language, and then proceed to the formal statements of rules below
in order to clarify aspects that the tables do not make clear.

Insert Tables I-V about here

Rules for array index notation

 Seven basic rules for AIN are presented below. Where applicable, the reader will
also be referred to particular parts of Tables I-V for illustrative examples of how a given
rule is applied.

Rule 1. Array names
(a) Definition of terms. The term �array� is used to represent any ordered set of numbers
 or subset thereof (see Rule 2). This includes a vector, matrix, and three-way array and/or
higher-way array. The number of ways or modes of an array corresponds to the number of
array subscripts that are �active� (i.e., that take on more than one value within the array; see
Rule 2). Inactive subscripts, if attached, designate modes of the parent array of which the
named object is a sub-array and are not counted as modes of the sub-array.

(b) Name format. The symbolic name of an array usually consists of a letter* to which
subscripts have been attached on the right. For an n-way array, exactly n of these
subscripts will be upper case. For example, JKx represents a two-way array indexed by J
and K. See Table I for further examples (other aspects of these examples will be explained
in the rules below).

(c) Multi-letter names. Multiple letters can be used in an array name if their meaning is
obvious, as in � JJ'cov � (if a covariance matrix is under discussion) or when they are

* In this paper, lower case italics are used in the array name but others might prefer a different type-face
and/or font. See the second ALS example, below.

 N-way generalization of matrix notation 4

appropriately linked (e.g., by an underline), as in JKssq . Examples are given in line 5 of
Table I and in Tables III-V.
(d) Expressions in place of names. A parenthesized AIN expression can be used in place of
a letter or set of letters. For example, j k JK()b c also represents a two-way array indexed
by J and K, but one in which the values of the elements are computed in a specific way
(see Rule 3 below). This method describes rather than names the array.

Rule 2. Simple subscripts
(a) Upper- vs. lower-case subscripts. An upper-case subscript indicates that all values in its
range occur in the object represented (i.e., the subscript is �active�); lower case indicates
that only a single value occurs (i.e., the subscript is �inactive�). For example, Ijh is a

subarray of IJh (i.e., it is a vector of elements taken across every level of the first mode at
a single level of the second mode). More generally, the upper case letter is the name of an
index set and the subscript takes on all values that are elements in that set*. Lines 7-19 in
Table I provide examples of subarray notation.

In its normal role, where it identifies the index name associated with a given position, a
subscript is not italicized. In Ijh , for example, �j� represents an arbitrary level of the index
(i.e. an arbitrary element from the index set J). However, if a particular non-italic lower
case appears more than once in an expression, it represents another occurrence of the same
arbitrary level.

A subscript is italicized only if it denotes a particular value, one that has been defined
outside the expression and is now being assigned to that index, as in Iuh , which indicates

that j = u. (This second expression is analogous to I2h except that the external variable u is
inserted in the second position instead of the constant 2. The index set for the second
position is still J, but u picks out a particular element of that set.) Line 19 in Table I
illustrates the difference, where the subscript symbol �i� indicates that the first subscript
position contains an arbitrary single value taken from an index set called �I�, while the
subscript symbol �u� indicates that the fourth index position has the value of the variable u.

(b) Expressions inside subscripts. Instead of a letter or name, a subscript position may
contain a valid AIN expression that can be evaluated to obtain the desired index value or

* The idea of an �index set� containing assignable values for a given subscript position is taken from
Reference [7].

 N-way generalization of matrix notation 5

set of index values, as in
1I, [2]kh + or

2 4 2rI, [...]k k kh *. In such cases, subscripts are separated by
commas (and spaces).

Rule 3. Composite subscripts and composite elements
(a) Composite subscripts. A composite subscript is written by enclosing two or more
index-set symbols in parentheses. For example, I (JK)a designates a two-way array that is

a strung-out version of the three-way array IJKa . The �(JK)� represents a single subscript
that takes on a distinct value for each combination of an element from the index set J with
one from the index set K; in other words, the composite (JK) subscript takes on the values
of the Kronecker product J⊗ K. (By convention, the left indicator changes fastest; see Rule
7 for more details about subscript order in the AIN context.)

(b) Composite elements. A composite element is written by enclosing an AIN expression
or computation formula in parentheses and then assigning it subscripts. For example,

j k jk()b c refers to an element in the array given above in Rule 1(d). The expression inside
the parentheses describes the contents of the array at the location designated by the
subscripts outside the parentheses.

One or more upper-case subscripts inside parentheses indicates that the expression
represents a sub-array instead of a single element. Any inner subscript that appears in
upper case does not appear outside the parentheses. For example, the subscript �J� in

i J k ik()p q s designates a vector at location (i,k) of a three-way array, while the entire
array may be written as i J k IK IJK()p q s t= or as i j k IJK IJK()p q s t= . The first

representation of IJKt emphasizes a particular sub-array structure while the second does
not.

(c) Array shape and equality. Equality of two arrays, designated by the equal sign �=�,
implies equality of both the array contents and array shape (also sameness of orientation,
see Rule 7, below). The symbol � ≈ � is used to express a weaker equality, that of contents
but not of shape, and is read �equals ignoring shape�. It will usually occur when composite
subscripts are employed for what was originally a higher-way array. Thus IJK I(JK)a a≈
and IJK (IJ)Ka a≈ , for example, which implies (IJ)K I(JK)a a≈ .

* An anonymous reviewer suggested adopting a MATLAB-like convention that uses the colon �:� to indicate
sequences of subarray index values, as in

2 2I, :2: xk kh or
1 2I, : ,Kj ja .

 N-way generalization of matrix notation 6

Rule 4. Array algebra
Array operations follow the standard rules used for tensors:

(a) Addition. Arrays are summed by adding corresponding elements (i.e., elements with the
same values in the same subscript positions).

(b) Scalar multiplication. An array multiplied by a scalar has all its elements multiplied by
that scalar.

(c) Array multiplication. The product of two arrays is an array containing (before any
contraction) each possible combination of an element from one array times an element
from the other, indexed by the subscripts from both arrays. For example, the array product

IJ KLM IJ KLM IJKLMa b a b c= ⊗ = has elements ijklm ij klm c a b= . Typically, array
products will be used in conjunction with contraction (explained below). See Table II for
examples of array multiplication (repeated subscripts and subscript embellishments such as
I′ are discussed in Rule 6).

Rule 5. Contraction (array trace)
(a) Contraction of an array. Array contraction is a generalization of matrix trace. An n-
way array can be contracted with respect to a given pair of indices by summing all
elements where the index value on these indices is the same and placing the sum in an
(2n −)-way array at the location determined by the 2n − indices not involved in the
summation. Both indices involved in the contraction must have the same range of values
(more generally, both index sets must have an equivalent set of elements).

For example, let bJL be the result of contracting aIJKL with respect to indices I and K.
The elements of bJL are given by jl 1j1l 2 j2lb a a= + +L or in summation notation, by

jl j li k ik
i k

b a δ= ∑ ∑ , where ikδ is the Kronecker delta (i.e., 1 if =ik i kδ = and 0

otherwise).

The contraction operation is represented by enclosing inside a set of parentheses both the
array to be contracted and (separated by two vertical lines) the index pair on which the
contraction is to be done.* For example, an expression for the array bJL defined above is

JL IJKL I=K(||)b a= .

* This contraction notation was originally proposed by D. S. Burdick for use with MATLAB (personal
communication, circa 1990). He also showed how the Parafac and Tucker models can be written using this
notation.

 N-way generalization of matrix notation 7

The two-way case is, of course, IJ 11 22I=J(||) = ... ()tracex x x+ = X .

(b) Contraction on multiple index pairs in one array. An array can be contracted on more
than one pair of indices at a time, so long as the indices in each pair have the same range of
values (same index set elements). For example, the array IK IJKLMN , M=NJ=L(||)c a=

has elements ik i kj l mn jl mn
j l m n

c a δ δ= ∑∑∑∑ , where jlδ and mnδ are Kronecker deltas.

The entire array can also be expressed as

IK I Kj lmn jl mn
j l m n

c a δ δ= ∑∑∑∑ .

(c) Generalization to k indices in one array. A generalized or k-index contraction can be
performed with respect to a specific set of k indices by summing all the elements having
the same value on these k indices and placing the sum in an (n k−)-way array at the
location determined by the n k− indices not involved in the summation. For example, if
dJMN is the result of contracting aIJKLMN on the indices I, K, and L, then we can write

JMN IJKLMN I=K=L(||)d a= . The elements are jmn j mni kl ik kl
i k l

d a δ δ= ∑ ∑ ∑ or,

equivalently, j mni kl ikl
i k l

a δ∑ ∑ ∑ , where iklδ is the (three-way) generalized Kronecker

delta (if1 ikl i k lδ = = = and 0 otherwise). As always, all indices involved in the
contraction (in this example, I, K and L) must have the same range of values.

(d) Contraction of a pair of arrays (array multiplication with contraction). Two arrays can
be contracted with respect to a given pair of indices (one index from each array) by taking
pairs of elements (one from each array) that have the same value on the two given indices,
computing their product, summing these products, and placing the sum in a location in the
product array determined by the remaining (non-matching) subscripts. For example, the
standard matrix product XY=Z is produced by first computing the four-way product

IJ KL IJKLx y z= and then contracting on J and K. (Another way of representing this is

IJ JL IJJLx y z= , with contraction on the repeated subscript; repeated subscripts are dealt
with in Rule 6.)

The form of the final product array depends not only on the size and shape of the arrays
being multiplied together but also on the user�s purposes (i.e., which contractions are
specified). Thus, for example, different products resulting from the same arrays might be
represented as IJK LM IJKLM IKM) =J=L J=L(||) (||a b g h= or as

IJK LM IJKLM I) =J=L, K=M J=L, K=M(||) (||a b g h= , depending on the circumstances.

 N-way generalization of matrix notation 8

(e) Generalization to k indices in several arrays. A generalized or k-index contraction can
be performed with respect to a specific set of k indices distributed among several arrays by
forming products of all the elements having the same value on these k indices, summing
these products and placing the sum in an (n k−)-way array at the location determined by
the n k− indices not involved in the summation.

For example, suppose dJMN is the result of contracting an array product on the triple of
indices I, K, and L such that JMN IJ KLM N IJKLMNI=K=L I=K=L(||) (||)d a b c u= = . The
corresponding summation notation is either jmn j m ni kl ikl

i k l
d a b c δ= ∑ ∑ ∑ or

jmn j mni kl ikl
i k l

d u δ= ∑ ∑ ∑ , where iklδ is the three-way generalized Kronecker delta as in

(c) above. The notation using u represents the process as two-stage: first the direct product
of all the arrays is formed, then a k-index generalized contraction is performed on the
result. Note that the contraction need not involve every array in the product; here, for
example, the array Nc is involved in the product, but not in the contraction.

Rule 6. Summation convention for array products
(a) Summation convention for matrices. For array products, there is sometimes an
alternative to the contraction notation presented above. Tensor notation uses repeated
subscripts to indicate how the product array is to be contracted*. For example, the matrix
product XY=Z is written as IJ JL ILx y z= , with the contraction performed on the repeated
subscript J. Another example is the product of the matrix aIJ and a two-way subarray of
the three-way array bJKQ which may be written as IJ JKq IKqa b c= , where

ikq i kq
=1

J

j j
j

c a b= ∑ . Under this convention, the explicit contraction notation is not needed

but if used, cIKq would be denoted as
I J JKq IJ JKq IJ J Kq I KqJ=J J=J(||) (||)a b a b u c= = = . The examples in Table II also

use repeated subscripts.

A second shared index represents an independent summation. For example, the
multiplication of one three-way array and two matrices to obtain a three-way array product

is written IJ JK HKL I H L HIL
1 =1

K J

j jk k
k j

a b u a b u t
=

= =∑ ∑ .

* This is often called the �Einstein summation convention�.

 N-way generalization of matrix notation 9

This summation convention is subject to the restriction that any subscript is repeated only
twice. A generalization of the rule to more repetitions is given in (c) below.

 (b) Avoiding unwanted summation. Sometimes it is natural to use a subscript index letter
twice but no summation over this index is desired. In such cases, some embellishment is
used to make the subscripts slightly different. Here we use a single quotation or �prime�
symbol, as is frequently done in standard tensor notation (see e.g. Reference [6]). There
should be no ambiguity in the use of this symbol since the transpose (or generalized
transpose) is not indicated by a prime in AIN (see Rule 7). To distinguish three or more
versions of the same subscript, one can use multiple primes or introduce other
embellishments such as the asterisk. If this becomes awkward because too many
alternative versions of a given subscript are needed, one can employ subscripted
subscripts.
For example, one could write I I IIa a h′ ′= to represent the outer product of a vector aI with

itself, and IJ I'J I I' II'
=1

J

j j
j

b b b b c= =∑ for the cross-product matrix obtained by multiplying

a matrix bIJ by itself. To avoid having to use embellishments to denote no summation, of
course, one can always use distinct subscript names and state explicitly which subscripts
are equivalent. This might be preferred in some multi-way cases.

Having said this, however, embellished subscripts may in fact be contracted if they are
repeated, using the convention described in 6(a) above. For example,

IR JR' KR' JR'' KR'' IRx y z b c d= , where the double occurrence of R′, R′′ , J and K implicitly
indicates contraction on these subscripts. The generalization to more repetitions in (c)
below also applies to embellished subscripts. Sometimes this usage may be confusing,
especially if the expression contains embellishments of other occurrences of the same
index name to prevent summation, and in such cases should be avoided.

Some of the items in Tables II-V demonstrate both uses of embellishments. For example,
line 9b in Table II shows I′ used once to indicate no summation over I, and J′ used twice to
indicate contraction over J′.

 (c) Multilinear generalization of the summation rule. When n arrays are being multiplied
together and the same symbol occurs as a subscript in k of these, the product array is given
a k-index generalized contraction on the matching subscripts (see also Rule 5(e)). In other
words, when the same index occurs in three or more arrays in a multi-array product,
elements having the same value of the repeated index are multiplied together and then
these products are summed across the range of the index.

 N-way generalization of matrix notation 10

For example, the Parafac/Candecomp model [8,9] can be written for a single element as
ijk i j kr r r

r
x a b c= ∑ if we combine AIN with standard summation notation, and for the

entire array as IJK I J K
=1

R

r r r
r

x a b c= ⊗ ⊗∑ in AIN and Kronecker product notation. AIN

and composite subscripts allow us to write the model for the unfolded or matricized [2]
version of the array as I(JK) IR jr kr (JK)R()x a b c= . However, by using AIN and the
generalized summation rule, the entire three-way array may be represented simply as

IJK IR JR KRx a b c= .

It is always possible to replace an expression involving the generalized summation rule
with one that does not, by using the generalized Kronecker delta. For example, the
Parafac1 model can also be represented as IJK IR JR' KR'' RR'R''x a b c δ= (which highlights its
structure as a special case of the Tucker3 model; see, e.g. References [10,11]). In fact,
one must use the less compact form involving the generalized Kronecker delta whenever
the generalized summation rule would lead to ambiguity.

Rule 7. Subscript order (including array transpose)
 (a) Array orientation and generalized transpose. The order of the subscripts attached to an
array name determines the array �orientation�. Changing this order is a generalization of
taking the transpose of a matrix. Consequently, if IJx = X , then JIx ′= X . Likewise, array

RJKSa is one possible transpose of the array JKRSa . There are 24 possible orientations of
this array, and so any particular version has 23 possible transposes.

(b) Array orientation and equality. The standard equal sign (�=�) between two arrays
implies equality of both the arrays and their orientation. Thus, in general, IJK IKJa a≠ .

However, transposes have a weaker kind of equality, namely, equality of array structure
and contents. The symbol � ≅ � is used to express this weaker equality (but it does not
preclude strict equality); it is read as �equals as object� or �equals ignoring orientation� or
�equal up to a permutation of subscripts�. Hence IJK IKJa a≅ . Likewise, KL IJy x≅ implies
either KL JIy x= or LK JIy x= . Naturally, if KL JIy x= then LK IJy x= and similarly,

LK JIy x= implies KL IJy x= .

(c) Symmetry. If an array is unchanged when two particular indices are permuted (e.g.,

IJK IKJa a=) then the array is symmetric with respect to those two indices. If the array
reverses sign when two particular indices are permuted (e.g., IJK IKJa a= −) the array is
anti-symmetric or skew-symmetric with respect to the two indices. An array that remains

 N-way generalization of matrix notation 11

constant under any permutation of indices is symmetric (without qualification), and one
that changes sign under permutation of any two indices is anti-symmetric (without
qualification). With higher-way arrays, there are additional aspects of symmetry that can
be considered (e.g., involving relations among effects of different possible permutations),
but these are beyond the scope of this article.

(d) Subscript order for the product of arrays. An expression describing the product of two
or more arrays does not, in itself, establish the subscript order of the result. If the
preceding text has stated that �subscript order is left unspecified� then

IJ MJK IMK MIKa b c c≅ ≅ ≅ L . Otherwise, the orientation of the product array is
determined in one of the following ways (listed in order of priority):
 (i) by explicitly specifying it in the expression, using �=� instead of � ≅ � ;
 (ii) by previously having specified an ordering convention (e.g., �throughout this

section, the default subscript symbol order will be M,V,I,U,W,G�); or
 (iii) by using the alphabetical order of the subscripts.

(e) Subscript order and subscript correspondence. In an array product, corresponding
subscripts (for purposes of contraction) are those with matching symbols. In an array sum,
corresponding subscripts are those with matching positions in the subscript lists of the
arrays being added. Thus, subscript order does not affect multiplication but it does affect
addition. Subscript order also affects the sequence of elements resulting from a vec()
operation.

(f) Indicating hidden order via annotated subscripts. In cases where ambiguities
concerning subscript names, subscript correspondence, etc. might arise, subscripts can be
�annotated� by placing a horizontal line underneath the subscript set, and then any
information needed below that. For example, the following expression represents a two-
way subarray of IJRa at level g+3 of I, the first subscript; it specifies that the second
subscript, J, ranges over its full set of index elements, and that the third subscript, R, takes
on only the three values 1, 3 and 8 rather than the original full index set for R:

+3, J, [1,3,8]
i J R

.ga

Using the array operations

Array addition
 Addition and subtraction of n-way arrays is used the same way and in the same
contexts as vector and matrix addition. For example, a fallible version of the Tucker3
model can be represented as IJK IR JS KT RST IJKx a b c g e= + .

 N-way generalization of matrix notation 12

Array multiplication
 Array multiplication under AIN is generally independent of array order. For
example, by using our freedom to chose the orientation of the array product, we can write

IJK JR IKRa b c= and JR IJK IKRb a c= . (If the subscript order has already been fixed for some
reason, however, we can only write IJK JR JR IJKa b b a≅ .)
 It is not the underlying operations (tensor product and contraction) that make
standard matrix multiplication non-commutative, but rather, it is the convention that the
contraction be applied to subscripts that are �adjacent� (i.e., the column index of pre-
multiplying matrix and row index of the post-multiplying matrix). Hence the product
depends on the order of the matrices. In contrast, AIN contracts on subscripts that have
matching index-set names (�I�, �J�, etc.), and this is independent of order and orientation of
the arrays being multiplied.
 Another difference is that matrix notation determines the order of the subscripts of
the product matrix by the order of the matrices being multiplied. The subscript order in
AIN is more flexible, however, since it can be chosen as desired or as determined by a
convention.
 Appendix I provides further details on the application and interpretation of array
multiplication, including demonstrations of commutativity and associativity.

Array �division� or inversion
What kind of array inverses exist?
 A matrix inverse is that matrix which, when multiplied by the original one, yields
the identity matrix. When this is generalized to rectangular matrices, the identity is only
expected if the matrix is multiplied by its inverse in the appropriate order, and the resulting
identity is not expected to be the same size as the original matrix. For the rank deficient
case, and for other kinds of generalized inverse that are �weaker� than Moore-Penrose, the
expectations are even more modest. It is not surprising, then, that we should be prepared
to accept some restriction on the conditions of multiplication and some flexibility
concerning the expected results, when the notion of inverse is generalized to higher-way
arrays.
 What should result when an n-way array is multiplied by its inverse? Sometimes
one might want a superdiagonal array (i.e., a generalized Kronecker delta) but other times,
an array that is �slicewise� identity (i.e., consists of matrices, each of which is the identity).
There are almost certainly additional interesting and potentially useful kinds of inverses of
higher-way arrays. Inverses of a particular kind might not exist for a particular class of
arrays, or might only exist if certain rank conditions are fulfilled, or perhaps only for
certain very special cases.
 It would be interesting to know what regularities can be discovered about which
kinds of inverses exist and when. We have not studied the general question of higher-way
inverses and know of no significant work in this area, although those who have studied
array rank and/or array diagonalization, such as J. DeLeeuw, H. A. L. Kiers, J. B. Kruskal,

 N-way generalization of matrix notation 13

and J. TenBerge, have thereby implicitly worked on array inverses. If progress has been
made, some reader(s) might bring this to our attention; if not, I would encourage
mathematically talented scholars to look at this question.
 As an example of how AIN might be used in the study of array inverses, consider
the simplest Parafac model IJK IR JR' KR'' RR'R''x a b c δ= , mentioned above in Rule 6. Suppose

aIR, bJR′ and cKR′′ are full column rank. What happens if we define a six-way array y as
+

IR JR' KR'' IR JR' KR'' IJKR R'R''()a b c a b c y+ + += = ? Then we have

 IJK IJKR R R IR JR KR RR R IR JR KR()()x y a b c a b cδ + + +
′ ′′ ′ ′′ ′ ′′ ′ ′′= .

This may be rewritten as
 IJK IJKRR R IR IR JR JR KR KR RR R()()()x y a a b b c c δ+ + +

′ ′′ ′ ′ ′′ ′′ ′ ′′=

or as
 IJK IJKRR R RR R R R R RR R RR Rx y δ δ δ δ δ′ ′′ ′ ′ ′′ ′′ ′ ′′ ′ ′′= = .

Thus, by one definition of a three-way inverse, y would seem to be the inverse of x. In the
two-way case, this type of inverse is closely related to the Moore-Penrose inverse, but in
general, this method would seem to produce an inverse with twice as many ways as the
array for which it is the inverse. There are probably inverses that are more compact, and
they could be more desirable.
 Note, however, that caution is required when working with array inverses. In
expressions such as those above, a very specific interaction between different quantities is
represented but this is not reflected by specific notation. AIN does not currently have
distinct symbols or conventions to differentiate between different kinds of array inverses,
and so the intended meaning of expressions like � IJKx+ � must be defined each time or be
quite clear from context. This is an area for further development by those studying array
inverses (and/or solutions to least squares problems, see below).

Inverses for solving least squares problems
 Clearly, one important kind of inverse is necessary if AIN is to be a suitable
substitute for, and generalization of, matrix notation. This is the class of �generalized
inverses� which provides a solution to certain least-squares problems posed in terms of
arrays, and is important for estimation of models by methods like Alternating Least
Squares (ALS). Model estimation can also be done by methods such as Paatero�s
Multilinear Engine [7], which is sufficiently flexible and powerful to allow the estimation
of the parameters of higher-way models without direct closed-form computation of array
inverses. Nonetheless, the widespread use and good features of ALS prompts us to
provide this option in the AIN context, and it is demonstrated later in the paper.

 N-way generalization of matrix notation 14

Uses of composite subscripts
 Composite subscripts can be used both to regroup subscripts or �unfold� a higher-
way array into a lower-way one and to �vectorize� it. For example, IJKa can be unfolded
into a vertical matrix (IJ)Ka , unfolded horizontally as I(JK)a or vectorized as (IJK)a . A

higher-way array such as IJKLMNb can be unfolded in various ways, for example into a
four-way array (IJ)(KL)MNb or into a matrix (IJK)(LMN)b , and it can also be vectorized as

(IJKLMN)b . The ordering of the elements in the unfolded array or vector should be explicit
�a suggested convention is that the fastest changing (or most deeply nested) subscript is on
the left, and those changing successively more slowly occur in sequence left to right.
Unfolding arrays into matrices is needed in problems involving generalized inverses, as
will be shown in the ALS examples below.

 Another important use of composite subscripts is for designating subparts of
higher-way arrays. This use is demonstrated in Appendix II with partitioned matrices and
higher-way arrays.

AIN representation of some important models
 Tables III and IV show matrix notation contrasted with AIN for some two-way
factor models and several ways of writing Parafac models, respectively. Only AIN is
presented in Table V for the various Tucker models. The two-way factor models are self-
explanatory; they are easily represented in matrix notation and what AIN adds is the size of
each matrix. The same might be said for the other models when they are presented in two-
way form, but AIN is the only alternative for higher-way representations.
 The Parafac1 model [8] for a full array cannot be represented in matrix notation,
and so it is also presented for any slice and for the unfolded array. The full array AIN has
three variations here, the first of which demonstrates the generalized summation rule over
R, the second which represents the model as a special case of the Tucker3 model [10,11]
and the third which views R (i.e., factors) as a fourth mode and incorporates a vector of R
ones (i.e., 1R) to sum over it (i.e., sum the factor contributions).
 The arbitrary-slice Parafac1 AIN is also given in three forms. The first is a simple
multiplication of three matrices. The second uses composite elements and the generalized
summation rule to accomplish the same thing. The third multiplies two matrices and a
vector from C without an intermediate diagonal matrix. It also employs the generalized
summation rule. The third version is presented in two ways to demonstrate the uses of
commutativity: the first more closely mirrors the corresponding matrix formula, the second
more closely represents the underlying logic and is more simply related to the prior full-
array representation.
 The two unfolded arrays are written in matrix form using Bro�s notation [1] and are
represented in AIN by using regrouped subscripts and composite elements. None of the
alternative representations for Parafac1 match the simplicity of the first alternative given
for the full array, however. Their value lies in their different perspective, which may be

 N-way generalization of matrix notation 15

useful in specific situations (such as a discussion bridging the gap between matrix and
array models).
 The Parafac2 model [1,12]* for the full array, which once again matrix notation
cannot represent, requires the use of composite elements in AIN. The AIN representation
of an arbitrary slice is another demonstration of the generalized summation rule, and of the
order independence of matrix multiplication.
 The various Tucker models (see [11] for Tucker2, -3 and -n) in Table V, are all
easily represented in AIN in full array modeling form. (�Tucker0� is not a real model, of
course, and is included only for completeness.) Just as with the Parafac models in Table
IV, these models can be represented in matrix notation as well as AIN if the array is
unfolded, but were not included in the table to save space. The last two lines of Table V
give special versions of T3 and T2 for covariance analysis. The last model is the basis for
Carroll�s independently developed MDS model called IDIOSCAL (J. D. Carroll and J. J.
Chang, paper presented at the Meeting of the Psychometric Society, Princeton, NJ, March
1972) [9,13] which allows IDIOsyncratic SCALing of both dimension weights and angles.

Least squares estimation of model parameters
 We now have the machinery needed to use AIN for solving multilinear problems.
We can demonstrate this by considering the estimation of parameter sets for multilinear
models.
Example 1. ALS estimation of the Parafac1 model
As noted in Rule 7(c) and in Table IV, one way to write the Parafac/Candecomp model is

IJK IR JR KRx a b c= . One can easily express the ALS procedure to estimate any one of the
sets of parameters a, b and c (i.e., obtain a least squares solution for one set while taking
the others to be fixed) by using composite elements and composite subscripts. For
example, we can write the Mode A estimation procedure as

 IR IJK JKR()a x y +=
where
 JKR jr kr JKR()y b c= .

To obtain JKR()y + , we first regroup the elements of y as (JK)Ry so that it becomes a

two-way array, then compute its Moore-Penrose inverse ()(JK)Ry
+

and finally, �ungroup�

the elements of the inverse.

* See also Kiers HAL, Ten Berge JMF, Bro R. PARAFAC2�Part I. A direct fitting algorithm for the
PARAFAC2 model. J. Chemometrics 1999; 13: 275-294.

 N-way generalization of matrix notation 16

In fact, we could have used composite subscripts to impose a corresponding two-way
regrouping on IJKx at the beginning. Then the estimation formula could have been viewed
as an ordinary matrix equation

 IR I(JK) (JK)R()a x y += .

Some might prefer to do this in practice, since, based on what we know now, the array
inversion must be reduced to a matrix problem. In theory, however, this added regrouping
is unnecessary. With further developments in the area of array inverses, it is hoped that the
need for regrouping will be reduced or eliminated altogether.

Contrast the regrouping of IJKx into I(JK)x with the more cumbersome and less
transparent matrix notation, which would represent the model as
 [] []1 2 1 2... K k K′ ′ ′ ′=X X X AD B AD B AD B AD BL L ,

where the Xk are I by J slices of the data array; the Di diagonals comprise rows of C, a K
by R set of parameters; and A and B are I by R and J by R parameter sets, respectively.
The estimation of A would then be represented as

[][]1 2 1 2... K k K
+′ ′ ′ ′=A X X X D B D B D B D BL L

(see e.g. Reference [14], p. 50). The economy and transparency of AIN is even more
apparent in four-way Parafac, where the estimation of the Mode A matrix would be
represented as

 IR I(JKL) jr kr lr (JKL)R(())a x b c d += .

Sometimes AIN will suggest a computation that might not have been tried otherwise, for
example, an alternative algorithm for Parafac that estimates the parameters one row at a
time. The estimation sub-step to update one row of a can be written (with the �+�
designating the inverse placed above the subscript for compactness) as

 iR iJK JR' KR''a x b c+ += .
This is not a least squares procedure, but it avoids the computation and inversion of the
larger y matrix that is necessary in the least squares version. Preliminary tests suggest that
an iteration may take only 4% of the execution time required by the true least squares
version. On the other hand, it may have undesirable properties such as instability in some
cases�this remains to be studied*.

* This approach has recently been proposed by Jiang J, Wu H, Li Y, Yu R. Three-way data resolution by
alternating slice-wise diagonalization (ASD) method. J. Chemometrics 2000; 14: 15-36.

 N-way generalization of matrix notation 17

Alternative conventions for array symbol fonts
 Until now, we have used lower-case italics for the non-subscript portion of an array
name. This convention was chosen to express the underlying unity of the nature of all
array objects, be they scalars, vectors, n-way arrays, elements from arrays, subarrays, or
whatever. In addition, this allows the text part of the name of a given array to be the same
as that of any subarray of that array, including a single element.
 This typographical convention is not an essential part of AIN, however. Other
more distinctive fonts could be used for the array names, or even different display
conventions for the text part of the name to distinguish arrays of different orders (as
below). These would not change the properties of the objects or the rules for working with
them.
 Besides demonstrating general properties of AIN, the second ALS example below
illustrates the use of an alternative typeface, one suggested by Henk Kiers (personal
communication, July 2000). The usual matrix notation conventions for vectors, matrices,
and arrays are retained, and so the resulting equations look more familiar and may be
easier for some users to read. This typography might thus be used to facilitate the
transition from matrix notation to full AIN.*
Example 2. ALS estimation of the parameters in the Tucker3 model
The AIN representation of the Tucker3 model is IJK IR JS KT RST=X A B C G .
If the Tucker model being estimated has the same number of factors for each mode,
estimation of the core array is simply and transparently written (with the compact inverse
notation used above) as

 RST IJK IR JS KT
+ + +=G X A B C ,

which is a true least squares procedure based on a two-way case proven in Reference [15],
pp. 60-61.

(Note that even in the case where IR JS KT
+ + +A B C do not all have the same rank, the solution

above will work. This is because no contraction has been done, and so the inverse is a six-
way array which retains the full information.)

Of course, it would also be possible to estimate the core by regrouping elements so that the
approach more closely parallels the standard matrix one. This would be

* (An even more minimalist approach --not illustrated in this article-- is to use conventional matrix notation
and conventional rules of algebra except where it is helpful to invoke the extended capabilities of AIN. The
AIN terms are distinguished from standard matrix terms by their appended upper-case subscripts, and this
implies that AIN rules of algebra must be used when manipulating them. However, this hybrid approach
might seem awkward to many users and would probably be replaced by a more uniform AIN notation as
familiarity with AIN increased.)

 N-way generalization of matrix notation 18

 (RST) (IJK) ir js kt (IJK)(RST)()a b c +=g x .

If we wanted to avoid the use of a composite element, we could let IJKRST IR JS KT=Z A B C

and, since (IJK) (RST) (IJK)(RST)=x g Z , we could write the estimation as

(RST) (IJK) (IJK)(RST)()+=g x Z .

The estimation of the Mode A, B, and C loading matrices is similar to that used in Parafac,
except with the addition of the core array. For example, the Mode A estimation is

 +
IR IJK JKR=A X Y ,

where

 JKR js kt JKST RST()b c=Y G .

What was said in Example 1 above about the computation of +
JKRY applies here as well, as

does the comment about regrouping IJKX into I(JK)X . In this case, the two-way

regrouping of JKRY can be viewed in different ways, however. One is

 ()(JK)R jS kT rST (JK)R()b c g=Y ,

and another is

 ()(JK)R js kt (JK)(ST) R(ST)()b c=Y G .

The second regrouping allows us to obtain +
(JK)RY from the product of two other matrix

inverses, i.e.

 () +
(JK)R js kt (JK)(ST) R(ST) js kt (JK)(ST) R(ST)() ()b c b c

++ += =Y G G

(provided that +
js kt (JK)(ST)()b c and R(ST)

+G have sufficient rank). This has the advantage

that the larger matrix (JK)RY does not have to be inverted. The �ungrouped� +
(JK)RY may

now be represented as

 + +
JKR js kt JKST RST()b c +=Y G .

The flexibility in grouping demonstrated by the above examples is the result of the
relatively arbitrary nature of the arrangement of elements in these arrays; two different
groupings can be functionally equivalent so long as the subscripts unambiguously define
the particular multiplication and summation of elements necessary to obtain the product
independent of the grouping. Thus, by using composite subscripts, higher-way arrays can
be reduced to matrices where conventional methods and ideas of inverses may be applied.

 N-way generalization of matrix notation 19

Future directions
 It is easier to demonstrate how AIN can simplify the expression of known
multilinear models and estimation methods than it is to demonstrate how it might facilitate
fundamentally new kinds of models or methods. There are, however, a few observations
that suggest possible new directions.
 Because of its greater flexibility, expressions can be written in AIN that specify
relationships among arrays that seem impossible to express in matrix notation*. Consider
the equation
 IJKL IRST JRUV KSUW LTVWx a b c d= .
Here, every array is linked by one contraction to each of the other three. How could this
possibly be represented with matrix notation, even allowing unfolding of x? Or consider
the simpler three-way version given in line 12 of Table II. Here, there are three �sources�
or �types� of factors: type-r, type-s, and type-t. These factors do not act through individual
modes but instead through pairs of modes. Consequently, each of the three modes has a
factor loading �matrix� that is actually a three-way �factor loading array�, containing an
entry at each external level (i or j or k) for each combination of two internal levels (r and s,
r and t, or s and t). This seems to represent some kind of factor interaction model, where
individual factors do not have a simple multiplicative effect in a given mode. Might this be
a more appropriate approach for modeling an ecological network? Further generalizations
may also be useful. For example, could there be a meaningful model in which the loadings
array for some mode(s) have a different number of ways from others? Could it even make
sense to combine this with one or more arrays that are purely internal, similar to Tucker�s
�core array�?
 The flexibility of AIN for expression of relationships might also make it possible to
use it to represent structural equation models. Since little work has been done on three-
way or higher-way structural equation models, perhaps this could be a useful way to
approach this research area.

* This raises a fundamental question: can a proof of the nonequivalence (or equivalence) of the two languages
be constructed? That is, for any expression that can be written in AIN is it possible to find an equivalent
matrix expression (involving unfolded arrays)? Is there always (AIN product) ≈ (matrix product) or even
(AIN expression) ≈ (matrix expression)?

 N-way generalization of matrix notation 20

Acknowledgements

I would like to thank Marg Lundy for many important contributions, and also Donald
Burdick for inspiration and Henk Kiers for useful discussion. This research was supported
by Natural Sciences and Engineering Research Council of Canada research grant OGP-
000-7896.

 N-way generalization of matrix notation 21

References

1. Bro R. Multi-way Analysis in the Food Industry: Models, Algorithms and

Applications. University of Amsterdam: Amsterdam, 1998;
http://www.mli.kvl.dk/staff/foodtech/brothesis.pdf [1 March 2001].

2. Kiers HAL. Towards a standardized notation and terminology in multiway analysis. J.

Chemometrics 2000; 14: 105-122.

3. Harshman RA. �Stretch� vs.�slice� methods for representing three-way structure via

matrix notation. Department of Psychology Research Bulletin #761; University of
Western Ontario: London, ON, 2001.

4. Alsberg BK. A diagram notation for N-mode array equations. J. Chemometrics 1997;

11: 251-266.

5. Burdick DS. An introduction to tensor products with applications to multiway data

analysis. Chemom. Intell. Lab. Syst. 1995; 28: 229-237.

6. Akivis, MA, Goldberg VV. An Introduction to Linear Algebra & Tensors (rev. English

edn), Silverman RA (trans. and ed.). Prentice-Hall: Englewood Cliffs, NJ, 1972.

7. Paatero P. The multilinear engine−a table-driven, least squares program for solving

multilinear problems, including the n-way parallel factor analysis model. Comput.
Graph. Statist. 1999; 8: 854-888.

8. Harshman RA. Foundations of the PARAFAC procedure: Models and conditions for

an �explanatory� multi-modal factor analysis. UCLA Working Papers Phonet. 1970;
16: 1-84.

9. Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling

via an N-way �Eckart-Young decomposition. Psychometika 1970; 35: 283-319.

10. Tucker LR. Some mathematical notes on three-mode factor analysis. Psychometrika

1966; 31: 279-311.

11. Kroonenberg PM. Three-mode Principal Component Analysis. DSWO Press: Leiden,

The Netherlands, 1983.

12. Harshman RA. PARAFAC2: Mathematical and technical notes. UCLA Working

Papers Phonet. 1972; 22: 30-44.

http://www.mli.kvl.dk/staff/foodtech/brothesis.pdf

 N-way generalization of matrix notation 22

13. Carroll JD, Wish M. Models and methods for three-way multidimensional scaling. In
Contemporary Developments in Mathematical Psychology, Vol. 2, Krantz DH,
Atkinson RC, Luce RD, Suppes P (eds). Freeman: San Francisco, 1974; 57-105.

14. Harshman RA, Lundy ME. PARAFAC: Parallel Factor Analysis. Comput. Statist.

Data Anal. 1994; 18: 39-72.

15. Rao CR, Mitra SK. Generalized Inverse of Matrices and its Applications. Wiley &

Sons: New York, 1971.

16. Harshman RA, Lundy ME. Data preprocessing and the extended PARAFAC model.

In Research Methods for Multimode Data Analysis, Law HG, Snyder CW, Jr, Hattie
JA, McDonald RP (eds). Praeger: New York, 1984; 216-284.

17. Kruskal JB, Harshman RA, Lundy ME. How 3-MFA data can cause degenerate

PARAFAC solutions, among other relationships. In Multiway Data Analysis, Coppi R,
Bolasco S (eds). North-Holland: Amsterdam, 1989; 115-121.

 N-way generalization of matrix notation 23

Appendix I. Examples of the substantive interpretation of
array multiplication

 As a concrete application of how higher-way array products can be interpreted,
consider the problem of computing the vitamin content of foods. We start simply, by first
assuming that we have two matrices, one V by I and the other I by D, that we call aVI and
bID, respectively. The element avi gives the amount of vitamin v (e.g., ascorbic acid,
riboflavin, etc.) in cooking ingredient i (peas, beef, butter, etc.), expressed, say, in
milligrams of the vitamin per gram of the ingredient. The entry bid gives the amount of
ingredient i in dish d (chicken soup, beef stew, chocolate cake, etc.) expressed, say, in
grams of ingredient per kilogram of the dish.
 The product of these two matrices, cVD, specifies the amount of each vitamin in
each dish (in milligrams per kilogram), and the relation can be represented in AIN as

VI ID VDa b c= .

Array-matrix multiplication
 Now suppose that we start with more information. Since year-to-year weather
variations and/or farming method changes and/or variation in genetics of the seed planted,
etc., produce changes in vitamin content, we consider the year that the ingredient was
grown as another factor influencing vitamin content. We incorporate this additional
information by converting aVI to a three-way array VIYa ; this array gives the typical
amount of each vitamin (v) in each ingredient (i) as measured each year (y). Now, the
product of array VIYa and bID , which may be easily represented as

 VIY ID VDYa b c= ,

gives the vitamin content of each dish for the year in which it was prepared. Figure 1
shows diagrammatically how to obtain VDYc . Implicitly, the tensor product of VIYa and
bID is computed to produce a 5-way result, which is then contracted on �I� (Ingredients) to
produce a three-way product.

Array-array multiplication
 In our multilinear modeling literature, array-matrix multiplication has already been
encountered (see Kruskal as cited in [16], p. 256, Reference [17], pp. 115-116, and
Reference [2]), but array-array multiplication is unfamiliar. However, AIN defines such
products and makes determining the result quite straightforward. We again use our food
example to demonstrate a meaningful interpretation.
 Suppose our matrix IDb is also modified to include information about the recipe
used for each dish, since the amounts of each ingredient may differ from one cooking
authority (e.g., cookbook) to another. We replace IDb with IDAb , which gives the amount

 N-way generalization of matrix notation 24

of ingredient i in dish d if prepared according to the recipe of authority a. Our four-way
product array,

 VIY IDA VDYAa b c= ,

(see Figure 1, bottom) gives the amount of each vitamin in any given dish during any
particular year, if the dish were prepared according to a particular recipe. Formally, this
array multiplication can be decomposed into computation of the 6-way tensor product
followed by contraction on �I�, which yields a four-way array.

A triple product
 Now suppose that we introduce a third array, DPYd , which tells us how many times
each dish was consumed by each of several persons in each of the years being considered.
We can then form the triple array product

 VIY IDA DPY VPAa b d c= .

The resulting three-way array gives the total intake of each vitamin, totaled across all
dishes and all years, for each person using the recipes of a given authority.
 The formation of this product is demonstrated in Figure 2, and can be viewed in
one of two ways. It can be seen either as a single action which creates a nine-way tensor
product that is then contracted on the shared indices (I, D, and Y), or as two successive
steps, each involving the product of two arrays. In the two-step process, the flexibility of
AIN allows any two of the three matrices to be multiplied together, in any order, and then
the product multiplied by the third matrix (i.e., VIY IDA DPY VPA()a b d c= or

VIY IDA DPY VPA()a b d c= or IDA VIY DPY VPA()b a d c= ; the subscript order is arbitrarily
determined by the user).
 An important observation to make regarding the two-step approach is that no
matter how the procedure is done, the intermediate step will make substantive sense. Let
us look at the intermediate products in the above example, the first of which is

VIY IDA VDYA()a b p= , which gives the vitamin content of each dish for each year, based on
the recipes of each authority. The second intermediate product is IDA DPY IPYA()b d q= ,
which gives the amount of each ingredient that would have been consumed by each person
in any given year based on the recipes of each authority. Similarly meaningful, the third
product, VIY DPY VPDI()a d r= , gives the total amount (cumulated over the years covered) of
each vitamin consumed by each person, broken down by each type of dish and by
ingredients in that dish. This last product might be useful to a mother, for example, who is
trying to decide whether to switch to a non-dairy ice-cream substitute when making certain
desserts for her family. She could find the answer to questions like: �how much calcium
has my daughter obtained from the milk content of the butterscotch sundaes that she is so
fond of?�.

 N-way generalization of matrix notation 25

 (Note also that if totals are desired, any detailed breakdown can be summed across
one or more modes by simply multiplying the array by the appropriate unit vector(s). For
example, the breakdown by dish but not by ingredient would be given by the array product

VPDI Ir 1 (where 1I is a vector of all ones whose length is equal to the size of the index set I),
and the total vitamin intake of each person would be given by the two-way table

VPDI I D VPr t=1 1 .)

 �Folding in� an array to add information
 There is another sort of array-combining operation that should be described; for
lack of a better name, we call it �folding in� an array to a product. It is best explained by an
example.
 For simplicity, let us go back to

 VIY IDA VDYAa b c= .

Suppose we are concerned that the vitamin content of an ingredient is reduced when it is
cooked, and we know that the higher the cooking temperature the more is lost, with some
vitamins being more heat sensitive than others. We obtain a table giving the loss of each
vitamin as a function of cooking temperature (when other things like cooking time are held
constant). In this matrix, an element gvt is a value between 0.0 and 1.0 that represents the
proportion of a dish�s typical content of vitamin v that remains if the dish was cooked (for
the recommended time) at a temperature that is raised t degrees above its standard cooking
temperature*.
 We want to incorporate this information as one additional mode of the array VIYa .
However, simple array-matrix multiplication gives us either
 VIY VT IYTa g a=
or
 VIY V' T V V' I Y Ta g a= ,

neither of which accomplishes our goal. What we want is an array VIYTa , and we can
obtain it by using composite elements to do what is essentially matrix-vector
multiplication, expressed as
 VIYT v IY v T V()a a g= .

 To some readers, this might seem too far removed from our tensor-like
foundations. However, it can be rewritten using a more complex expression that involves
only standard tensor products and contractions as
 VIYT V IY V' T V V'a a g δ= ,

* In this example, only temperatures above a dish�s standard temperature are considered. If lower-than-
standard temperatures were also included, values of gvt greater than one would occur as well.

 N-way generalization of matrix notation 26

where δ is the (three-way) generalized Kronecker delta (i.e., the elements vv'δ are one
where v=v′ and zero otherwise).

 N-way generalization of matrix notation 27

Appendix II. Partitioned Matrices and Arrays

Partitioned Matrices in matrix notation and AIN
 Partitioned matrices can be represented clearly, if somewhat awkwardly, in matrix
notation. Parallel capabilities were not deliberately built into AIN, but as it turns out,
composite elements (Rule 3) can be used as a compact way of denoting such matrices.
Partitioned matrices as implicit higher-way arrays
 We define a �partitioned matrix� in the usual way: a matrix in which subsets of the
rows and columns are blocked off from others by boundaries or �partitions�, as in

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

a a a a a a
a a a a a a
a a a a a a
a a a a a a

 
 
 =
 
 
 

A .

In contrast, A can be represented in AIN by using composite elements as
 IJmn MN()a ,

where I=J=2, M=2 and N=3 (or as (IM)(JN)a if the partitioning is ignored). This also shows
how A may be viewed as a �supermatrix�, a matrix whose elements are themselves
matrices, as in

11 12 13

21 22 23

 
=  

 

A A A
A A A A

where, for example, one element (or �submatrix�) is

 31 32
21

41 42

a a
a a

 
=  

 
A .

 Partitioned matrices arise in various contexts. Often they have served as another
device for incorporating higher-way classifications into matrix form. For example,

IJmn MN()a can be written as a four-way array IJMNa if the composite elements are
eliminated by replacing each lower case subscript inside the parentheses with the
corresponding index set name from outside. This procedure is the converse of some earlier
examples, where we started with a higher-way array and used composite subscripts to
represent subarrays thereof.

 N-way generalization of matrix notation 28

Multiplication of partitioned matrices
 It is well known that the rules of matrix multiplication used for scalar elements can
be applied in the same way to the matrix elements of supermatrices. For example, matrix
notation shows the multiplication of two supermatrices A and B as

11 12

11 12 13 11 12
21 22

21 22 23 21 22
31 32

 
    

=    
    

 

B BA A A C C
B BA A A C C
B B

 ,

where

11 12 11 11 12 21 13 31 11 12 12 22 13 32

21 22 21 11 22 21 23 31 21 12 22 22 23 32

+ + + +   
=   + + + +   

C C A B A B A B A B A B A B
C C A B A B A B A B A B A B .

This equivalence is also reflected in AIN, which would represent the above multiplication
as MN NP MPa b c= (M=P=2, N=3). Viewing the problem at the level of the scalar
elements of the submatrices, the same multiplication may be written as

 (IJmn)MN (JKnp)NP (IKmp)MPa b c=

(assuming each submatrix in A is I by J and each submatrix in B is J by K).

 Still at the level of the scalar elements of the submatrices, we could also consider
the above multiplication to be a four-way product of two four-way arrays, that is,

IJMN JKNP IKMPa b c= . Or, ignoring all the partitioning, we would have

(IM)(JN) (JN)(KP) (IM)(KP)a b c= . In practice, the choice of representation depends on which
best reflects the theoretical structure of the problem at hand.

Partitioned higher-way arrays
 It is straightforward to generalize from matrix to array partitioning. Array
partitioning may be interpreted as simply dividing an array into regions, but an equivalent
perspective is that arrays of arrays are constructed. That is, n-way arrays can be built
using m-way (sub)arrays as elements, with the size of m unrestricted relative to n.
 Partitioning as a device to deal with higher-way arrays within a two-way context is
unnecessary in AIN, as we have seen, but sometimes it may provide useful theoretical or
conceptual insight into how operations at a higher scale are related to those at a smaller
more familiar scale. Therefore, we examine the generalization of partitioning to n-way
arrays (keeping in mind Reference [5]�s point that most often how we visualize the

 N-way generalization of matrix notation 29

arrangement of the elements is irrelevant; this will become increasingly apparent as we
consider equivalent representations below.)
A partitioned four-way array
 Consider a four-way array that is partitioned into four-way subarrays, as illustrated
in Figure 3 on the left. Here we have (IL)(JM)KNa , which after partitioning, has the

structure IJKNlm LM()a . Given that I=6, J=2, K=4, L=2, M=3, and N=6, we see that
originally it is 12x6x4x6, and after the partitioning is a 2x3 superarray composed of 6
elements that are 6x2x4x6 subarrays.
 Note that, if the �nesting� of subarrays within other arrays that is indicated by the
partitioning notation is not meaningful for the current application, we might instead replace
the partitioned array with the unpartitioned six-way array IJKLMNa . For many purposes,
this might be equally effective, but this does not reveal the structural relationships inherent
in the partitioning. Still other groupings of the subscripts are possible, corresponding to
other ways of conceptualizing the array object. For example, one variation is hierarchical
partitioning, where we could represent the partitioned array as IJ Klm LMn N(())a . It is not
particularly meaningful in this context, and we present it only to give the reader an idea of
what other possibilities there are.
Multiplication of n-way partitioned arrays
 Figure 3 illustrates the result of multiplying two partitioned arrays together while
maintaining the partitioned structure. It is written as
 (IJKNlm)LM (JPKmq)MQ (IPNlq)LQa b c= .

This views the problem as an LxM supermatrix (composed of subarrays that are IxJxKxN)
multiplied by an MxQ supermatrix (composed of subarrays that are JxPxK) to produce an
LxQ product (composed of arrays that are IxPxN).
 As a check, let us represent the multiplication ignoring the partitioning in the
arrays. This perspective is equivalent to multiplying the scalar elements of the arrays
together. Now we have
 (IL)(JM)KN (JM)(PQ)K (IL)(PQ)Na b c= .

Here we see the product as one big three-way array, rather than a set of smaller three-way
arrays.
 Unless there is some reason to retain the partitioning as shown, it is of course
simpler to represent the partitions as more �ways� in the arrays. Then the situation
involves a six-way array times a five-way array, which results in a five-way product, and is
given by
 IJKNLM JPKMQ ILPQNa b c= .

 N-way generalization of matrix notation 30

 Table I. Objects: Arrays and subarrays

Object

Standar
d
matrix
notation

Array
index
notation

 1 Scalar a a

 2 Vector a Ia

 3 Matrix A IJa

 4 N-way array A IJK...a

 5 Array with multi-character name ___ II'std

 6 Matrix element ija ija

 7 Column vector in matrix ja Ija

 8 Row vector in matrix ia iJa

 9 Row 2 in matrix (as column vector) 2a 2Ja

10 Column 2 in matrix (as column vector) 2a I2a

11 Column 2 in matrix (as row vector) 2′a I2a

12 3-way array X IJKx

13 kth (frontal) slab in array kX IJkx

14 4th (horizontal) slab in array 4X 4JKx

15 4th (lateral) slab in array 4X I4Kx

16 Array fiber (column vector) ikx iJkx

17 4-way array Y IJRSy

18 3-way subarray of Y at level �r� of third mode (Mode C) rY IKrTz

 N-way generalization of matrix notation 31

19 2-way subarray of Y at level �i� of Mode A and for a level
of Mode D specified by the value in variable u (i.e., t=u)

iuY iKRuy

 Table II. Matrix products

 Product Matrix
notation

Array index
notation

 1 Two scalars wa wa

 2 Scalar and vector or w wa a
 Iwa or Ia w

 3 Inner product of two vectors ′c d =e I Ic d e=

 4 Outer product of two vectors ′ =ab C I J IJa b c=

 5 Outer product of vector with itself ′ =aa G I I' II'=a a g

 6 Two matrices =AB C IJ KJ IKa b c=

 7 Two matrices (second is square) =AQ C IJ JJ' IJ'a q c=

 8 Two matrices (second is square and multiplied rowwise) ′ =AQ C IJ' JJ' IJa q c=

9a Three matrices =ABC H IJ JK KQ IQ

IJ KJ KQ IQ

,
,

etc.

a b c h
a b c h

=

=

9b Three matrices (one repeated) ′ =AGA C IJ JJ' I'J' II'a g a c=

10 Higher-way arrays ______ IJK JKL ILa b c=

11 Array - subarray ______ IjK jKL IjL ILa b c d= =

 N-way generalization of matrix notation 32

12 More complex linkages (e.g., for new kinds of models) ______ IRS JST KRT IJKa b c x=

 N-way generalization of matrix notation 33

 Table III. Two-way factor models

 Model

Matrix
notation

Array index
notation

 Direct fit to data ′=X AB IJ IR JRx a b=

 Indirect fit (via covariances) =C AΦA' I I' IR RR' I'R'cov a aφ=

 Orthogonal indirect fit =C AA' I I' IR I'Rcov a a=

 N-way generalization of matrix notation 34

 Table IV. Parafac1 and Parafac2

Model Matrix notation Array index notation

Parafac1 (for
full array)

 _________ IJK IR JR KRx a b c=

IJK IR JR' KR'' RR'R''x a b c δ=

IJK Ir Jr Kr R R ir jr kr IJKR R() 1 () 1x a b c a b c= =

Parafac1 (for a
representative
slice)

k k ′=X AD B IJk IR RR'k JR'

IJk IR rr kR JR

IJk IR kR JR IJk IR JR kR

()
x a d b
x a d b
x a c b x a b c

=
=
= =or

Parafac1 (for
array unfolded
horizontally)

(IxJK)X = A (C ◎ B)΄ I(JK) IR jr kr (JK)R()x a b c=

Parafac1 (for
array unfolded
vertically)

(IJxK)X = (A ◎ B) C΄ (IJ)K ir jr (IJ)R KR()x a b c=

Parafac2 (for
full array)

 _________ I I'K IR kr rr' kr RR K I'R'()cov a c c aφ ′ ′=

Parafac2 (for a
representative
slice)

Covk k k ′= AD ΦD A

I I'k IR kR RR' kR I'R'cov a c c aφ ′=

 N-way generalization of matrix notation 35

Table V. Tucker Models

Model Array index notation

T4 IJKL IR JS KT LU RSTUx a b c d g=

T3 IJK IR JS KT RSTx a b c g=

T2 IJK IR JS RSKx a b g=

T1 IJK IR RJKx a g=

�T0� IJK IJKx g=

Symmetric T3 (e.g., for
covariances)

II'K IR I'R' KT RR'Tcov a a c g=

Symmetric T2 (e.g., for MDS);
also Carroll�s IDIOSCAL

II'K IR I'R' RR'Kcov a a g=

 N-way generalization of matrix notation 36

 Figure 1. Array-matrix and array-array multiplication.

Ingredient

In
gr

ed
ie

nt

V
ita

m
in

Ingredient

In
gr

ed
ie

nt

V
ita

m
in

Year

Food
Authorities

VIY ID VDYa b c=

VIYa

V
ita

m
in

Dish

V
ita

m
in

Year

Food
Authorities

Year

Year

a c

a b

c

Dish
Year
Ib
Dish
DA VDYc=
Year
A

Dish
b

 N-way generalization of matrix notation 37

Figure 2. A product of three arrays.

nt

Year
Food
Authorities

%

d

Year
Ingredient

In
gr

ed
ie

 Food
Authorities

D
is

h

People

V
ita

m
in

%

VIY IDA DPY

VPA

a b d
c=
Dish
a

 b
V
ita

m
in

 People
c

 N-way generalization of matrix notation 38

 =

 J

 M

 J J J

N

I
 L

K

K

K

K

K

K

I

 Figure 3. A product of two partitioned arrays.

K

J
J
J

M

P P P P P

Q
Q

I
L

I

P P P P P

N

a

c

b

I=6 J=2 K=4
L=2 M=3 N=6
P=3 Q=5
(a
 IJ
KN
lm
)LM
 (JPKmq)MQ (IPNlq)LQb c=

 N-way generalization of matrix notation 39

	I
	Introduction
	Shortcomings of current notation for multilinear models
	Proposal for new notation
	General features of the new notation
	Illustrative examples of the new notation

	Rules for array index notation
	Rule 1. Array names
	Rule 2. Simple subscripts
	Rule 3. Composite subscripts and composite elements
	Rule 4. Array algebra
	Rule 5. Contraction (array trace)
	Rule 6. Summation convention for array products
	Rule 7. Subscript order (including array transpose)

	Using the array operations
	Array addition
	Array multiplication
	Array ‘division’ or inversion
	What kind of array inverses exist?
	Inverses for solving least squares problems

	Uses of composite subscripts
	AIN representation of some important models
	Least squares estimation of model parameters
	Example 1. ALS estimation of the Parafac1 model

	Alternative conventions for array symbol fonts
	Example 2. ALS estimation of the parameters in the Tucker3 model

	Future directions
	Acknowledgements
	References
	Appendix I. Examples of the substantive interpretation of array multiplication
	Array-matrix multiplication
	Array-array multiplication
	A triple product
	‘Folding in’ an array to add information

	Appendix II. Partitioned Matrices and Arrays
	Partitioned Matrices in matrix notation and AIN
	Partitioned matrices as implicit higher-way arrays
	Multiplication of partitioned matrices

	Partitioned higher-way arrays
	A partitioned four-way array
	Multiplication of n-way partitioned arrays
	Table I. Objects: Arrays and subarrays
	Table II. Matrix products
	Table IV. Parafac1 and Parafac2
	Table V. Tucker Models

