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Notes on slide changes:**

A few slides have been reworded for clarity since my talk. 
These are indicated by a single asterisk (on the title).

In addition, some new slides have been inserted. 
These are indicated by a double asterisk on the title (as above). These 
slides convey information that was only given orally or written on the  
blackboard when I gave the talk, but that now needs to be included 
visually to provide essential connections or explanation to those viewing 
this slide set for the first time. 

There is also an Annotated Bibliography in a separate file
available on this site. It goes over the contributions mentioned on the 
“Short History” slide in much more detail, and has recently been updated 
to include several talks given at, or subsequent to, the 2004 Workshop. 
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An Example of the Degeneracy 
Phenomenon:  The TV-Ratings Data**

A research study collected ratings of 15 TV 
programs made by 40 people.  

Each person rated each show on 16 rating 
scales, such as “1=Violent …7= Peaceful”. 

The data formed a three-way array, size 
15x16x40, as shown on the next slide.
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The Degenerate Parafac Solution**

In the standard Parafac analysis, the 3 factor solution 
contained two factors that had extremely high negative 
correlations in all modes. Contributions of the two factors 
got larger and larger (diverged) as the analysis 
progressed -- but since they almost cancelled out -- the 
sum of the two converged. 

On the plot, the two factors that were “participating in the 
degeneracy” had collapsed into a ragged line of points. 
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Blocking Degeneracy**

However, when the factors in any mode were constrained to 
have independent (uncorrelated) loadings, a new solution 
was obtained in which all 3 Modes had a meaningful 3-factor 
structure.

The TV-show Mode was chosen as the “most natural” one for 
the constraint.

In the constrained solution, the two previously degenerate 
(collinear) factors were found to be Program Humor and 
Program Sensitivity (later confirmed by “unshearing”). 

The non-degenerate version of the Rating Scales plot is shown 
on the next slide. 
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Is it meaningful?**

12

We discovered that the degenerate solution actually recovers the full 
information, but it’s hidden.

There exists a linear transformation that brings the degenerate solution into 
agreement with the nondegenerate one. After the transformation, both 
nondegenerate factors are recovered well (recovery correlation is over .99 
for each). 

The transformation relating the two solutions was an extreme shear (to be 
explained) --sometimes in combination with rotation.

The degeneracy phenomenon:
(a) imposes an extreme shear on the subspace spanned by the factors 
involved 
(b) It affects all three Modes, shearing some one way and some the 
reverse way 
(c) often it keeps getting more and more extreme with each added 

iteration of the analysis...

What’s Going On Here?



Short History of Study of Degeneracy*
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• Harshman and Lundy (1984) first described phenomenon and 
showed, both by “filtering” real data and by constructing simulated 
data, that “Tucker-variation” (changes in axis angles) caused it.

• Kruskal et al. (1989) provided basic mathematical framework for 
relating properties of degeneracy to surprising array rank properties.

• Ten Berge (1988,1991) proved key part of main theorem stated by 
Kruskal and added insights about rank and “typical rank” of arrays.

• Mitchell and Burdick (1994) discovered novel degenerate behavior: 
temporary quasi-degeneracies, which they called “swamps”. 

• Rayens & Mitchell (1997) introduced idea of “regularization” to 
stabilize algorithms, avoid swamps, and accelerate convergence.

• Paatero (2000) deepened structural understanding of degeneracy and  
showed how to create arrays yielding degeneracies and “swamps”.

• Zijlstra & Kiers (2002) identified universal properties of degenerate 
solutions that were present across wide variety of factor-like models. 



“Swamps”

• Mitchell and Burdick (1994) identified temporary 
degenerate behavior of ALS on route leading to 
nondegenerate solution

• Progress slows down to almost standstill for 
thousands of iterations, with dimensions highly 
correlated, then speeds up and good and 
nondegenerate solution is found
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Degeneracy is Linked to 
Uniqueness:

“Only decompositions with unique solutions show 
the problem of degeneracy” –

Zijlstra & Kiers 2002
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Unique vs. Nonunique 
Decompositions

• Unique: 
Parafac,  Parafac2,   PARATUCK, Constrained 
Tucker,   (and special 2-way models )   

–but only when factor independence conditions fulfilled

• Nonunique: 
Tucker T3,   Tucker T2,    PCA (!),   etc.
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Review: Why is Parafac 
Decomposition Unique?*

Geometrically, the space at each slice of the array 
differs from that at other slices only by reweighting 
of axes that are common to all slices. Direction of 
axes that give best reweighting is often unique. 

In contrast, Tucker decomposition allows general 
linear transformation of axes from one slice to next 
– angles can change, but now the best-fitting 
combination of angles and weights is not unique.
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Cautions about Uniqueness*

To be scientifically meaningful, uniqueness must be due to  
deep (low rank) latent structure rather than surface noise 
or disturbances.

Uniqueness requires that factors have adequate variation 
independence (e.g., meet Kruskal’s k-rank condition) 
before noise is added.

For uniqueness to have scientific meaning, appropriateness 
of the model’s structural form is important

Unique decompositions (e.g., Parafac1 or 2) are more 
“fragile” than nonunique ones (e.g. Tucker). Too much  
systematic variation inconsistent with a unique model can 
have surprising effects -- cause degenerate solutions.
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Dealing with Degeneracy**
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To prevent degeneracy, one can either
• Block the correlations. By imposing factor-independence 

constraints (i.e., requiring either orthogonality or zero 
correlation of loading vectors in any one mode) you can 
prevent an “image vs. anti-image” factor pair from forming 
since this would require a high negative correlation.

• Or block the negative factors. Constraining all factor loadings 
to be positive (reasonable in many physical applications) is 
an alternative way of preventing “anti-images”, since factor 
cancellation requires negative loadings. 

• And avoid bad neighborhoods. “Regularization” (a fit-penalty 
for diverging loadings) can be used to stabilize algorithms 
and avoid “swamps”.



Puzzling Questions**

The strange phenomenon of degeneracy gives rise to several 
basic questions, including the following:  

1.  Why/how do degenerate solutions arise? 

2.  Why do they seem characteristic of unique-axis models like 
Parafac?

3.  Why do these solutions take the strange form that they do:  
a severe shear of the underlying factor spaces?

4. Why do degenerate solutions sometimes diverge, with 
parameter values irresistibly growing toward plus and minus 
infinity? 

5.  What is the proper interpretation of ‘swamps’? 
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A Geometric Approach**

Algebraic analysis by Kruskal et al., ten Berge, Paatero and 
others has produced valuable progress in our understanding 
(e.g., see the Annotated Bibliography). 

The goal here is to provide a geometric account that gives direct  
insight into the degeneracy phenomenon along with simple 
answers to these 5 questions, at least for the simplest cases. 

Naturally, there are many refinements to be worked out for the 
more complex cases. 

Nonetheless, it is hoped that this geometric approach (and its 
algebraic underpinnings) will provide a useful avenue for 
developing further understanding of this phenomenon.
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An Explanation of Degeneracy in 
words and pictures **

It may seem surprising for a ‘geometric approach’, 
but we start with a verbal statement of our conclusion

22



A verbal explanation of degeneracy**

1. Degenerate solutions arise when more 
restricted models encounter (slightly) 
less restricted variation. 

– In our case, the model is Parafac, which has 
unique fixed axis orientations.  

– The less restricted variation is “Tucker-
variation”, in which the orientation or skew of 
axes can vary across slices of the array.
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A verbal explanation of degeneracy**
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2. The model responds by ‘transforming itself’.       
It alters its internal representation of the data in 
such a way that it can mimic the (slightly) more 
general variation.

– In our case, the Parafac “base factor space” in one 
mode (e.g., A) becomes severely sheared, while the 
base space in another mode (e.g., B) becomes 
inversely sheared; this allows the third mode (e.g., C) 
to apply weights “in between” the shear and anti-shear 

– This lets its axis weights have the effect of varying 
angles as well as stretching axes. 



A verbal explanation of degeneracy**
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3. Sometimes, the degeneracy “is never enough”, 
and parameter estimates go to infinity.

– Some data arrays have a “difficult” combination of 
stretching and skewing for which the fit can always be 
improved by making the shear more severe.

– So the fitting never stops: with each iteration, the 
degeneracy becomes more and more extreme, yet the 
improvements get smaller and smaller. 

– The loadings in each base space diverge to plus and 
minus infinity but the inverse relation between modes 
makes these effects “cancel” and the model’s 
approximation to the data converges.



Mathematical Explanation of Degeneracy**

26

A simple mathematical analysis will show how 
degeneracy allows Parafac to (partly) fit “Tucker-
variation”. 

This increased flexibility of degenerate Parafac will 
then be demonstrated with a couple of numerical 
examples. 

But first, we need to:
– define some notation, basic matrices, and terminology
– give a mathematical expression for Tucker-variation 
– give a mathematical expression for the Parafac 

approximation to that variation, first without, and then 
with, a degenerate transformation of its representation of 
the factors



Review:**

Variations across slices of an array

• Two kinds of variation can occur, alone or in combination:  a) 
variations in the length of factor axes or basis vectors (which 
can be represented by Parafac and the Tucker models), 
and/or b) variations in their skew or orientation relative to the 
points (which can be represented by the Tucker models). 

• In psychology, for example, changes in factor length would 
correspond to increases or decreases in psychological 
importance or impact of a given dimension, whereas changes 
in orientation would correspond to changes in “character” or 
“overtones of meaning” of a dimension.

• Next 2 slides illustrate how the models represent the two 
types of variation
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Picture of Parafac variation:  axis 
reweighting only for 2 factors X and Y**
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-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

1

2

3

4

5

6

7

8

9

 

 

X wt =1.7,    Y wt =0.75

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

1

2

3

4

5

6

7

8

9

 

 
X wt =1.3,    Y wt =0.75

Y

X

28



Picture of “Tucker-variation”:                        
axis weight plus skew variation for 2 factors**
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X w t =0.8,  Y w t =1.3,  shear: X col, theta=0.143
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Parafac model of cross-slice variation**

Consider an IxJxK array X with elements xijk and “slices”
Xk. The Parafac model for variation across levels of 
Mode C can be written  

where A is an IxR matrix of factor loadings for Mode A, 
and B is a JxR matrix of factor loadings for Mode B. 
The matrix Dk is a diagonal matrix that contains the 
row of Mode C factor loadings or weights for the kth

slice of the array. 

These weights stretch or contract the axes in the space 
of A and/or B by (typically) different amounts for each 
value of k. 

k k ′=X A D B
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The Fixed-Axis Model Parafac**

Represents Variation Across Slices By        :  
kD

1

2

0 0
0 0
k k

k k

Xweight
k Yweight

c
c

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =D

Its diagonal contains row k of C, the factor loading matrix 
for Mode C (the array slices).

Thus, the diagonal elements of         are weights that 
determine the effect of factor 1 and 2 in the kth slice.
We sometimes refer to them as X and Y weights (as in 
the previous picture of Parafac axis reweighting).

kD
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Terminology Needed for the Tucker Case**

• “shear”
= a transformation of a space in which points are 
shifted along one axis in progressively greater 
amounts; the amount is proportional to where they are 
on the other axis (see picture next slide) 

• “skew”
= axis slant in the base space (when axes are plotted in 
Euclidian coordinates, see picture)

• “base space”
= the factor space (e.g., for Mode A) and its  point 

configuration.  This is represented by the factor loading 
matrix (e.g., A)
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• Shear (along x-axis):      

Shear Matrix 

• Skew (of y-axis that results):

Shear and Skew**

1 0

.7 1

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

S



Skew is changed by shearing the space:**

A shear matrix has the elementary form                      .

The effect of a shear is to add a fixed amount of one 
dimension to another. This skews it in the direction of the 
other. For example, the matrix above replaces the original 
factor 1 with the sum (factor 1 + factor 2).  This skews the 
new factor 1 axis 45 degrees toward factor 2. 

To produce different amounts of shear, one simply changes 
the size of the lower left element. A parameterized version 
is shown on below, in which the amount of shear is 
controlled by the value of     : 
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1 0
1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=S

σ 1 0
1k σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

=S
k⎜ ⎟

⎝ ⎠



Tucker model of cross-slice variation**

35

To fit Tucker-variation, we need to replace the “stretch only”
Parafac model of cross-slice variation                   with a more 
general one that allows for angle variation, i.e.,      

where                  , and      is a shear that varies across k.

If, for example, only one axis varies in skew it becomes 

With no restrictions on Tk, it is the T2 Model; otherwise, T3.     

k k ′X = AD B

kk ′X = AT B
kk k=T S D

1 1

1 2 1 1 2

1 0 0 0
1 0

k k
k k

k k k k k
k

c c
c c cσ σ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
T S D

kS



The Parafac ‘degeneracy compromise’**
An imperfect compromise is possible. The method is to surround 

the  Dk by a fixed shear and its inverse.  Thus, we replace the 
three-parameter T with the two-parameter approximation 

For some fixed degree of shear     , this becomes  

Which gives a “reweighting” matrix that uses the same two 
parameters, but has the form

1

2

01 0 1 0ˆ
01 1
k

k
k

c
cσ σ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

T

1ˆ
k k

−=T SD S

σ

( )
1

1 2 2

0ˆ k
k

k k k

c

c c cσ

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

T
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Limitation of the compromise**

( )
1

1 2 2

0ˆ k
k

k k k

c

c c cσ

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

T
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This is an imperfect solution because the shear-strength 
parameter is no longer independent of the stretch 
parameters. 

When there is substantial skew variation, this compromise 
usually improves fit and so the analysis will go degenerate. 
But how much of an improvement it provides in a given 
situation would seem to depend on the particular 
covariation of the skew and stretch parameters in the data.



The Degenerate Parafac Output**

38

• Parafac outputs only three factor loading matrices. Thus, 
the actual output for a degenerate solution is for the 
regrouped terms shown below as

• Renaming the grouped terms as single matrices, we 
obtain

• Where               and                    .  

1

2

1 0 0 1 0
1 0 1

1  

 
A A

w
w

k

σ σ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

− ′

′A B

A S D S B

k ′A D B

=A AS 1−′=B BS



Summary of What Happens Inside 
Parafac**

ˆˆ ˆ ˆ
k k ′=X A D B In standard Parafac,  Dk stretches axes as needed 

to fit the space at level k of Mode C of array

For the ‘degeneracy compromise’, 
Parafac needs to embed the reweighting 
between shear transformations

1ˆ ( )k k
− ′=X A SD S B

1ˆlet   ( )k k
−=T SD S then ˆ ˆ  k k ′=X A T B A better model, but

it must be fit indirectly

1ˆ ( ) ( )k k
− ′=X AS D S B

1ˆ ( ) ( )

ˆ

k k

k k

−′ ′=

′=

X AS D BS

X AD B The “degenerate” Parafac dimensions become  
sheared versions of nondegenerate ones 

Since model only allows diagonal D, the 
shears must be absorbed into fixed part of 
the model, shearing them instead of D

let  ( )=A AS 1( ) −′= BSB
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Note:**

All of the following MATLAB slides (except the 
simulated “degenerate” Mode A and B space 
shown in slides 47 and 48) were presented during 
the original 2004 Tensor Workshop talk. They 
show the results of numerical experiments carried 
out in Spring of 2004 in collaboration with Margaret 
Lundy. 

However, here as elsewhere, the explanation of these 
results that was provided orally during the talk has 
now been provided in written form by inserting 
additional explanatory slides. Added slides are 
indicated by the double asterisk on the title.
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Numerical Experiments
that Test/Demonstrate the Explanation**

Degeneracy is simulated by hypothesizing a “true” structure with added 
non-Parafac variation and then applying to it the same distortions that 
occur during actual degenerate solutions.  

We shear one “base space” (here taken to be A), reweight its axes, and 
then inversely shear the result.  If S represents the shear, we apply

The shear reproduces the effect that degeneracy has on Mode A and the 
inverse shear reproduces the effect on Mode B.

The degree of shear, and the sizes of axis weights, are both manipulated 
to see their effects. We are particularly interested in the non-stretch 
changes they produce.

1( )k
−A SD S
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Recall: Parafac approximates Tucker-
variation by reweighting sheared axes**

42

More generally, we simulate skew variation in A factor 2 
(Y) due to shears of A factor 1 (X). The simulated 
degenerate transformation has the form

shear * stretch * (un)shear

where w1 and w2 are the axis weights for slice k, and            
determines the degree of shear. 

1

2

1 0 0 1 0
1 0 1

1
k

A A

w
wσ σ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

−
A S D S

A

Aσ



Some arbitrary choices**

• We start each experiment with the 
rectangular array of points shown in the 
next slide for A and B.  This is our “base 
space”.

– (Actually, any scatter of points would do; this 
orderly grid is chosen to make it easier to see 
subsequent distortions) 

• For convenience, we take the configuration 
to be factor 1 and 2 in Mode A.

– but it could be any two factors in any mode.
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Hypothesized Tucker-variation of 
the data structure**

• For simplicity, we hypothesize just one extra source of 
variation beyond the Parafac model:

– One axis of one ‘base space’ changes orientation or “skew”
across array slices  

– For convenience, we arbitrarily take the mode involved to be 
Mode A, the axis that changes skew to be factor 2 or “y”, which 
means the space is sheared along factor 1 or “x”; the factor 2 
skew changes across levels (slices) of Mode C.

– Plots of sheared common base spaces will show factors to be 
highly correlated in opposite directions (this would be result of 
Parafac analysis of data containing the hypothesized Tucker 
variation)
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Parameters for Demonstration 1: 
Slight reweighting of a ‘strong degeneracy’**

1 0
4.68 1
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

SShear imposed  on A:

Reweighting:

Shear imposed on B:

1.01 0
1 0 0.99

⎛ ⎞
⎜ ⎟
⎝ ⎠

=D .99 0
2 0 1.01

⎛ ⎞
⎜ ⎟
⎝ ⎠

=Dand

( ) 1 -4.68
0 1

1 ′ ⎛ ⎞
⎜ ⎟
⎝ ⎠

− =S
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Results:**

The next two plots show the sheared A space weighted 2 
different ways. They indicate different Mode A axis 
orientations across 2 slices of Mode C (Tucker variation 
which violates the fixed-axis Parafac model), which 
Parafac can represent by reweighting the degenerate 
common A and B spaces shown previously.

Compare the small circles (both weights equal) to the red 
points (weights slightly different) to see how small 
inequalities affect Y axis size and skew. 

The first slide shows a rightward skew produced by 
weights 1.01 and .99.  The second shows the opposite 
skew produced when the weights are reversed (.99 and 
1.01).
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Interpretation**

The synthetic degeneracy shows how weight 
variation of fixed but highly sheared axes in 
Modes A and B can imitate what is really 
angle variation of non-fixed unsheared axes 
in Mode A of the data.  

In this way, degenerate Parafac can fit some 
Tucker variation. 
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Demonstration 2:**

Weak vs. Strong Shearing of the Base Space

This next simulation compares effects of a weak
degeneracy to those of a strong degeneracy.  
--What kind of data requires strong shear? 

The stronger the degeneracy, the more stretch 
variation is translated into skew variation. 
--Strong shear is needed when skew variation 
is large and stretch variation is small.
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In this first case, we simulate a weak degeneracy:**

(a) A mild shear (    = .41)  is imposed on the A space and a mild 
inverse-shear (    = -.41) is imposed on the B space.

(b) Weights for the axes are chosen to produce a Y skew of 
approximately 45 degrees.  This requires a 1.3 weight on X and a
.769 weight on Y.  

When the shear, weights, and anti-shear are all absorbed into A, the 
45 degree skew appears. In addition, there is substantial stretching 
of X and compression of Y. The resulting effect is a combination of 
stretch/compression and skew.

With weak degeneracy, stretches are only partly translated into 
skews.

σ
σ
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In the second case, we simulate a strong degeneracy:**

(a) A very strong shear is imposed on the A space and very 
strong inverse-shear on B (    = 12.7). 

(b) Again, axis weights were found that produced an 
approximate 45 degree shear. This turned out to be a very 
small stretch and compression (X*1.01, Y*.99).  

When all the transformations are absorbed into A, only the skew
is apparent. 

With strong degeneracy, the stretches are almost completely 
translated into skew.

σ
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X wt =1.01, Y wt =0.9901, shear: X col, theta=1.4923
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Interpretation:**

The degree of degeneracy determines what 
proportion of the Mode C weight-ratio 
variation is transformed into skew variation, 
and what remains as axis stretch variation.
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Possible Implications**

59

This suggests that:

In datasets where little variation is due to changes in axis skew, only mild 
degeneracy will occur. Too much degeneracy would reduce the model’s 
ability to fit the axis-stretch part of the cross-slice variation.

On the other hand, in datasets where most of the variation is due to 
changes in axis skew, strong degeneracy will be needed to optimize fit.  

In the latter case, a well defined optimal solution may exist but be 
embedded inside a ‘swamp’.  For such a solution, the recovered Mode A, 
B, and/or C base space configurations will be moderately to severely 
sheared, even if convergence is attained (but even this may not occur --
see next slide).

However, these spaces could be linearly transformed into the “true”
configurations if only the correct transformation could be determined. 
Lacking this, transformations that maximize X-Y independence might be 
used as a “first guess”.



Non-converging degenerate solutions**

60

There are circumstances where no amount of shearing is enough to attain 
optimum fit, and instead the loadings and shear parameters diverge to 
infinity. 

Even in the very simplified case that we have been considering (where skew 
varies on only one axis in one mode of a two-factor solution), there is at 
least one circumstance that will obviously lead to diverging parameter 
values. This is the case where all the cross-slice variation consists of skew 
variation (i.e., there is no differential axis stretching or contraction). This 
corresponds to the cross-slice Tk matrices shown below on the left.

In this case, Parafac would want to fit a family of Tk approximations having the 
form on the right, where delta is the difference between the two c weights.

Fit of the right hand approximation to the left hand pattern is improved 
whenever the right hand sigma is made larger and delta smaller. Since any 
given solution can be further improved, the shear diverges “forever”.

( )
1 0

1k
k σ δ δ

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

T1 0

1k
k σ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

T



61

In Sum:**

• Spaces to be fit can vary by stretching, skewing, or both. 

• The more it’s due to skewing, the harder it is for fixed-axis 
models to fit -- so the stronger their shearing must be.

• Some combinations of stretch and skew cannot be well 
approximated by any shearing and/or rotation of the base 
configurations followed by stretches of the transformed 
dimensions. 

• Trying to fit such patterns produces shearing and anti-
shearing that diverges to infinity. This is where the worst 
degeneracy problems arise.

• One can try increasing the dimensionality of the spatial 
representation and stretching in higher dimensions…

• Or: restate the fitting problem in a suitably restricted form.



Further comments:**

Some Complications and Caveats
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Stretch-Skew Covariation**

63

• The ‘degeneracy compromise’ gives up some accuracy in 
fitting stretch-variation to improve accuracy in fitting skew-
variation. Some benefit of this kind should usually be 
possible, though not necessarily enough to get full fit.

• However, we have ignored up to now an important 
consequence of this kind of compromise. The two kinds of 
variation cannot be modeled independently. The modeled 
skew is determined by the ratio and size of the modeled 
stretches.

• Therefore, the benefit of the ‘degeneracy compromise’
depends on how axis skew and stretch happen to actually 
covary in the data--whether the empirical relationship is 
consistent with, or at least not severely at odds with, the 
kind of covariation that the compromise requires. 



Multiple axis skews**

• The initial case we have explored here is the simplest 
possible. When extending it to more realistic situations 
and higher numbers of factors, we need to consider the 
interaction of variation in one axis skew with that of 
another axis in the same mode. 

• To do so is beyond the scope of this presentation, but our 
current analysis suggests that the multi-axis case may 
have relatively straightforward representation in terms of 
(a) added shear matrices and/or (b) added linearly 
dependent dimensions in the base space. The second 
kind is equivalent to added nonzero cells of the Tucker 
T3 core. 
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Cross Mode interactions**

• We have also ignored the question of how 
representation and approximation of skews in 
one mode interact with those in another.

• There seems no reason that the effects and 
equations modeling them cannot be applied to 
two modes simultaneously. They should be able 
to be “multiplied together”, since they are all 
represented by linear and multilinear 
transformations (as applied, perhaps, to an 
order three tensor).
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PFCORE

66

[ In my talk, this title on an 
otherwise blank slide was put 
here as a reminder to say 
something at the end about 
PFCORE. However, the reminder 
didn’t help because I ran out of 
time(!) 

Now, I have tried to make up for 
that: I have appended a few 
follow-up slides that tell a bit of 
the story --and hopefully do it 
better than I would have then, 
anyway. ]



Analyzing what causes a degeneracy --
for even greater insight into your data**

67

The PFCORE method combines Parafac and Tucker T3 
models. It retains the uniqueness of fixed-axis Parafac 
yet sheds light on the skews that complicate the 
picture.

A Tucker T3  “core matrix” estimated for the dimensions 
obtained via constrained Parafac reveals the specific 
skew-like angle variations of the Parafac factors that 
led to the degeneracy. These can then be interpreted.

PFCORE turned the degeneracy in the TV data into 
added insight about individual differences in “sense of 
humor” .



Applying PFCORE to the TV Data**

68

• The Parafac solution had 3 factors:

Humor  -- how funny the show was
Sensitivity -- how gentle vs. crude
Violence  -- how much violence it had

• Degeneracy arose (a) because these dimensions 
interacted: the perceived level of one affected the 
perceived level of another 

• And (b) because the amount of the interaction changed
across raters.  Thus, axis angles would change and the 
space would skew differently from one rater to the next

• PFCORE uses the Parafac factors to compute a “core 
array” that reveals these patterns of factor interaction.



**The “core array”
shows three 
patterns of factor
interaction.

These reflect 
differences in 
degree of functional 
relatedness of 
dimensions.

Geometrically, 
these become 
changes of inter-
factor angles and 
produce skews of 
the factor spaces.

Core Array**

From:  Lundy et al. 1989
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First Slice of Core from PFCORE 
analysis of TV data**

Interaction: 
Violent shows more funny Basic effect of humor
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Second Slice of Core Array **

Basic effect of sensitivity



Third Slice of TV Data Core Array**

Interaction: 
Violent shows less funny

72
Basic effect of violence

Interaction:
Sensitive shows more funny



Interpretation of PFCORE results**
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Conclusion**

Some people think violence can be funny. 
They probably like “The Three Stooges”.

Others think violence is no laughing matter.
To them, “The Three Stooges” are 
politically incorrect. 

Overcoming degeneracy can be a wonderful 
thing.
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Thank You
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Postscript:**

There is a different mathematical perspective (first 

developed by Kruskal) that has played an important 

role in the study of degeneracy…
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A Solution “Going Degenerate”**

Kruskal et al. (1989) examined the process of a two-factor 
Parafac solution becoming progressively more 
degenerate in terms of its location in, and progress 
through, the rank-2 region of the 8-dimensional space of 
possible 2x2x2 arrays. 

As the Parafac rank-2 approximation gets better, it gets 
closer to the data in the 8-D space. But (by hypothesis) 
the data array is embedded in the rank-3 region, and 
hence is unreachable. 

As Parafac progresses closer to the rank boundary, the 
solution must take on an increasingly degenerate form.
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sequence of improving 
2D approximations but 
increasingly degenerate 
solutions

data

**

Kruskal et al., 1989

(0)x is the 
boundary point 
closest to x 



Degeneracy appears when Parafac’s sequence 
of improving approximations approaches a 

higher-rank region in array-space**

79

• Subsequent work by ten Berge, Paatero and others have 
proven this correct, and extended it in interesting ways.

• This also accounts for “swamps”– as was conjectured by 
Mitchell, Burdick, and Ryan, and subsequently demonstrated 
by Paatero. 

• For more information on this “array-space” perspective, see 
articles listed in the annotated bibliography on degenerate 
Parafac solutions that is provided as a supplement to these 
slides.


	The Problem and Natureof Degenerate Solutions or Decompositions of 3-way Arrays
	Acknowledgements**
	Notes on slide changes:**
	An Example of the Degeneracy Phenomenon:  The TV-Ratings Data**
	The Degenerate Parafac Solution**
	Blocking Degeneracy**
	Is it meaningful?**
	Short History of Study of Degeneracy*
	“Swamps”
	Degeneracy is Linked to Uniqueness:  “Only decompositions with unique solutions show the problem of degeneracy” – Zijlstra
	Unique vs. Nonunique Decompositions
	Review: Why is Parafac Decomposition Unique?*
	Cautions about Uniqueness*
	Dealing with Degeneracy**
	Puzzling Questions**
	A Geometric Approach**
	An Explanation of Degeneracy in words and pictures **It may seem surprising for a ‘geometric approach’, but we start with a
	A verbal explanation of degeneracy**
	A verbal explanation of degeneracy**
	A verbal explanation of degeneracy**
	Mathematical Explanation of Degeneracy**
	Review:**Variations across slices of an array
	Picture of Parafac variation:  axis reweighting only for 2 factors X and Y**
	Picture of “Tucker-variation”:                           axis weight plus skew variation for 2 factors**
	Parafac model of cross-slice variation**
	The Fixed-Axis Model Parafac**       Represents Variation Across Slices By        :
	Terminology Needed for the Tucker Case**
	Shear and Skew**
	Skew is changed by shearing the space:**
	Tucker model of cross-slice variation**
	The Parafac ‘degeneracy compromise’**
	Limitation of the compromise**
	The Degenerate Parafac Output**
	Summary of What Happens Inside Parafac**
	Numerical Experiments that Test/Demonstrate the Explanation**
	Recall: Parafac approximates Tucker-variation by reweighting sheared axes**
	Some arbitrary choices**
	Hypothesized Tucker-variation of the data structure**
	Parameters for Demonstration 1: Slight reweighting of a ‘strong degeneracy’**
	
	
	Interpretation**
	Demonstration 2:**Weak vs. Strong Shearing of the Base Space
	Interpretation:**
	Possible Implications**
	Non-converging degenerate solutions**
	Further comments:** Some Complications and Caveats
	Stretch-Skew Covariation**
	Multiple axis skews**
	Cross Mode interactions**
	PFCORE
	Analyzing what causes a degeneracy --for even greater insight into your data**
	Applying PFCORE to the TV Data**
	First Slice of Core from PFCORE analysis of TV data**
	Second Slice of Core Array **
	Third Slice of TV Data Core Array**
	Interpretation of PFCORE results**
	Conclusion**
	Thank You
	Postscript:**There is a different mathematical perspective (first developed by Kruskal) that has played an important role in
	A Solution “Going Degenerate”**
	Degeneracy appears when Parafac’s sequence of improving approximations approaches a higher-rank region in array-space**

